Genome-wide SNP analysis of shows differentiation at drug-resistance-associated loci among malaria transmission settings in southern Mali.
Author
Coulibaly, AouaDiop, Mouhamadou Fadel
Kone, Aminatou
Dara, Antoine
Ouattara, Amed
Mulder, Nicola
Miotto, Olivo
Diakite, Mahamadou
Djimde, Abdoulaye
Amambua-Ngwa, Alfred
Date
2022-10-04Journal
Frontiers in geneticsType
Article
Metadata
Show full item recordAbstract
Plasmodium falciparum malaria cases in Africa represent over 90% of the global burden with Mali being amongst the 11 highest burden countries that account for 70% of this annual incidence. The persistence of P. falciparum despite massive global interventions is because of its genetic diversity that drives its ability to adapt to environmental changes, develop resistance to drugs, and evade the host immune system. Knowledge on P. falciparum genetic diversity across populations and intervention landscape is thus critical for the implementation of new strategies to eliminate malaria. This study assessed genetic variation with 12,177 high-quality SNPs from 830 Malian P. falciparum isolates collected between 2007 and 2017 from seven locations. The complexity of infections remained high, varied between sites, and showed a trend toward overall decreasing complexity over the decade. Though there was no significant substructure, allele frequencies varied geographically, partly driven by temporal variance in sampling, particularly for drug resistance and antigen loci. Thirty-two mutations in known drug resistance markers (pfcrt, pfdhps, pfdhfr, pfmdr1, pfmdr2, and pfk13) attained a frequency of at least 2% in the populations. SNPs within and around the major markers of resistance to quinolines (pfmdr1 and pfcrt) and antifolates (pfdhfr and pfdhps) varied temporally and geographically, with strong linkage disequilibrium and signatures of directional selection in the genome. These geo-temporal populations also differentiated at alleles in immune-related loci, including, protein E140, pfsurfin8, pfclag8, and pfceltos, as well as pftrap, which showed signatures of haplotype differentiation between populations. Several regions across the genomes, including five known drug resistance loci, showed signatures of differential positive selection. These results suggest that drugs and immune pressure are dominant selective forces against P. falciparum in Mali, but their effect on the parasite genome varies temporally and spatially. Interventions interacting with these genomic variants need to be routinely evaluated as malaria elimination strategies are implemented.Rights/Terms
Copyright © 2022 Coulibaly, Diop, Kone, Dara, Ouattara, Mulder, Miotto, Diakite, Djimde and Amambua-Ngwa.Identifier to cite or link to this item
http://hdl.handle.net/10713/20111ae974a485f413a2113503eed53cd6c53
10.3389/fgene.2022.943445
Scopus Count
Collections
Related articles
- Antimalarial drug resistance molecular makers of Plasmodium falciparum isolates from Sudan during 2015-2017.
- Authors: Hussien M, Abdel Hamid MM, Elamin EA, Hassan AO, Elaagip AH, Salama AHA, Abdelraheem MH, Mohamed AO
- Issue date: 2020
- A comprehensive analysis of drug resistance molecular markers and Plasmodium falciparum genetic diversity in two malaria endemic sites in Mali.
- Authors: Diakité SAS, Traoré K, Sanogo I, Clark TG, Campino S, Sangaré M, Dabitao D, Dara A, Konaté DS, Doucouré F, Cissé A, Keita B, Doumbouya M, Guindo MA, Toure MB, Sogoba N, Doumbia S, Awandare GA, Diakité M
- Issue date: 2019 Nov 12
- Comparative assessment on the prevalence of mutations in the Plasmodium falciparum drug-resistant genes in two different ecotypes of Odisha state, India.
- Authors: Kar NP, Chauhan K, Nanda N, Kumar A, Carlton JM, Das A
- Issue date: 2016 Jul
- Genomic analysis reveals independent evolution of Plasmodium falciparum populations in Ethiopia.
- Authors: Abera D, Kibet CK, Degefa T, Amenga-Etego L, Bargul JL, Golassa L
- Issue date: 2021 Mar 4
- Effect of three years' seasonal malaria chemoprevention on molecular markers of resistance of Plasmodium falciparum to sulfadoxine-pyrimethamine and amodiaquine in Ouelessebougou, Mali.
- Authors: Mahamar A, Sumner KM, Levitt B, Freedman B, Traore A, Barry A, Issiaka D, Dembele AB, Kanoute MB, Attaher O, Diarra BN, Sagara I, Djimde A, Duffy PE, Fried M, Taylor SM, Dicko A
- Issue date: 2022 Feb 8