CVR-MRICloud: An online processing tool for CO2-inhalation and resting-state cerebrovascular reactivity (CVR) MRI data.
Author
Liu, PeiyingBaker, Zachary
Li, Yue
Li, Yang
Xu, Jiadi
Park, Denise C
Welch, Babu G
Pinho, Marco
Pillai, Jay J
Hillis, Argye E
Mori, Susumu
Lu, Hanzhang
Date
2022-09-28Journal
PLoS ONEType
Article
Metadata
Show full item recordAbstract
Cerebrovascular Reactivity (CVR) provides an assessment of the brain’s vascular reserve and has been postulated to be a sensitive marker in cerebrovascular diseases. MRI-based CVR measurement typically employs alterations in arterial carbon dioxide (CO2) level while continuously acquiring Blood-Oxygenation-Level-Dependent (BOLD) images. CO2-inhalation and resting-state methods are two commonly used approaches for CVR MRI. However, processing of CVR MRI data often requires special expertise and may become an obstacle in broad utilization of this promising technique. The aim of this work was to develop CVR-MRICloud, a cloud-based CVR processing pipeline, to enable automated processing of CVR MRI data. The CVR-MRICloud consists of several major steps including extraction of end-tidal CO2 (EtCO2) curve from raw CO2 recording, alignment of EtCO2 curve with BOLD time course, computation of CVR value on a whole-brain, regional, and voxel-wise basis. The pipeline also includes standard BOLD image processing steps such as motion correction, registration between functional and anatomic images, and transformation of the CVR images to canonical space. This paper describes these algorithms and demonstrates the performance of the CVR-MRICloud in lifespan healthy subjects and patients with clinical conditions such as stroke, brain tumor, and Moyamoya disease. CVR-MRICloud has potential to be used as a data processing tool for a variety of basic science and clinical applications. © 2022 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Data Availibility
The anonymized data sets necessary to replicate our study findings are shared on Dryad.Data / Code Location
https://doi.org/10.5061/dryad.wh70rxwqwIdentifier to cite or link to this item
http://hdl.handle.net/10713/19986ae974a485f413a2113503eed53cd6c53
10.1371/journal.pone.0274220