• Login
    View Item 
    •   UMB Digital Archive
    • UMB Open Access Articles
    • UMB Open Access Articles
    • View Item
    •   UMB Digital Archive
    • UMB Open Access Articles
    • UMB Open Access Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Pre-operative Machine Learning for Heart Transplant Patients Bridged with Temporary Mechanical Circulatory Support †

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Author
    Shou, Benjamin L.
    Chatterjee, Devina
    Russel, Joseph W.
    Zhou, Alice L.
    Florissi, Isabella S.
    Lewis, Tabatha
    Verma, Arjun
    Benharash, Peyman
    Choi, Chun Woo
    Date
    2022-09-01
    Journal
    Journal of Cardiovascular Development and Disease
    Type
    Article
    
    Metadata
    Show full item record
    See at
    https://doi.org/10.3390/jcdd9090311
    Abstract
    Background: Existing prediction models for post-transplant mortality in patients bridged to heart transplantation with temporary mechanical circulatory support (tMCS) perform poorly. A more reliable model would allow clinicians to provide better pre-operative risk assessment and develop more targeted therapies for high-risk patients. Methods: We identified adult patients in the United Network for Organ Sharing database undergoing isolated heart transplantation between 01/2009 and 12/2017 who were supported with tMCS at the time of transplant. We constructed a machine learning model using extreme gradient boosting (XGBoost) with a 70:30 train:test split to predict 1-year post-operative mortality. All pre-transplant variables available in the UNOS database were included to train the model. Shapley Additive Explanations was used to identify and interpret the most important features for XGBoost predictions. Results: A total of 1584 patients were included, with a median age of 56 (interquartile range: 46–62) and 74% male. Actual 1-year mortality was 12.1%. Out of 498 available variables, 43 were selected for the final model. The area under the receiver operator characteristics curve (AUC) for the XGBoost model was 0.71 (95% CI: 0.62–0.78). The most important variables predictive of 1-year mortality included recipient functional status, age, pulmonary capillary wedge pressure (PCWP), cardiac output, ECMO usage, and serum creatinine. Conclusions: An interpretable machine learning model trained on a large clinical database demonstrated good performance in predicting 1-year mortality for patients bridged to heart transplantation with tMCS. Machine learning may be used to enhance clinician judgement in the care of markedly high-risk transplant recipients.
    Keyword
    cardiac surgery
    heart transplant
    machine learning
    mechanical circulatory support
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/19912
    ae974a485f413a2113503eed53cd6c53
    10.3390/jcdd9090311
    Scopus Count
    Collections
    UMB Open Access Articles

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.