• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Effect of Excipients on the Performance of Spray-dried Amorphous Solid Dispersion (ASD) in Tablets

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Yu_umaryland_0373D_11378.pdf
    Size:
    8.308Mb
    Format:
    PDF
    Download
    Author
    Yu, Dongyue cc
    Advisor
    Hoag, Stephen W.
    Date
    2022
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Amorphous solid dispersions (ASD) are a proven method of improving the solubility and bioavailability of poorly soluble drugs. Immediate-release tablets are frequently used as the final dosage form for ASDs. The selection of polymers and excipients is critical for the manufacturability and bioavailability of ASD tablets. ASDs were prepared by spray drying; ASD tablets were then generated using a compaction simulator. We first studied the impact of polymer types and drug-polymer ratios on bulk powder properties, morphologies, and compaction behaviors of ASDs. Itraconazole (ITZ) and indomethacin (IND) were used as model drugs, and two polymers were used: hydroxypropyl methylcellulose acetate succinate (HPMCAS) and polyvinylpyrrolidone (PVP). The results indicated that the tabletability increased with decreasing drug loadings, except for ITZ-PVP ASDs. Multivariate analysis revealed that particle surface area was the most significant factor influencing the tensile strength of ASD tablets. Secondly, the contact angle and surface free energy of ITZ ASD tablets containing different HPMCAS grades and drug loadings were evaluated using a Drop Shape Analyzer. A larger contact angle was correlated with a higher dissolution rate, suggesting that contact angle could be a high throughput tool for screening ASDs formulations. Lastly, we investigated the influence of fillers such as microcrystalline cellulose, lactose, mannitol, and starch on drug release and stability of ITZ-HPMCAS ASDs. We discovered that the dissolution performance and physical stability of tablets were influenced by the choice of filler. The results and inferences drawn from this research will provide valuable insights into ASD formulation development downstream tablet production.
    Description
    University of Maryland, Baltimore. Pharmaceutical Sciences. Ph.D. 2022
    Keyword
    amorphous solid dispersion
    compaction simulation
    Drug Liberation
    Spray Drying
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/19809
    Collections
    Theses and Dissertations School of Pharmacy
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.