• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Investigating the Role of Microglia and Extracellular Vesicles in Spinal Cord Injury-Induced Brain Dysfunction

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Khan_umaryland_0373D_11373.pdf
    Size:
    6.822Mb
    Format:
    PDF
    Download
    Author
    Khan, Niaz cc
    Advisor
    Faden, A. I.
    Date
    2022
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Spinal cord injury (SCI) causes brain neurodegeneration leading to cognitive and affective changes, including memory loss and mood alterations. Using SCI models, we and others have demonstrated that progressive neurodegeneration is accompanied by neuroinflammation, including sustained microglial activation. The primary goal of this dissertation was to test the hypothesis that SCI triggers brain microglia-mediated neuroinflammation and secondary neurological dysfunction and to study the underpinning mechanisms including changes in systemic and central extracellular vesicles (EVs). First, we probed the mechanisms responsible for microglia activation and examined the effect of pharmacological depletion of microglia on posttraumatic neuropathology and cognitive/depressive-like behavior in a mouse SCI model. Microglial depletion significantly improved neuronal cell loss in key brain regions and associated cognitive/depressive-like behavioral outcomes after SCI. The transcriptomes of the spinal cord and brain were also substantially altered, supporting our hypothesis that microglia significantly contribute to changes related to inflammation, neurotransmission, and apoptosis after SCI. Second, we studied changes in circulating EVs after SCI. EVs are biological nanoparticles released from cells that contribute to intercellular communication and can become altered with disease. We found a significant increase in plasma tetraspanin CD81+ EVs after SCI at 1d post-injury. Surface CD81 was decreased on astrocytes at the injury site, suggesting that these cells may release CD81+ EVs into circulation. Total plasma EV microRNA content was also significantly modified, similar to the profile previously described in inflammatory astrocyte EVs. Notably, when injected into the cerebroventricular system, plasma EVs from SCI mice increased brain expression of several inflammatory genes, including markers of astrocyte reactivity. Finally, we examined the brain transcriptional profile and EV changes 19 months post-SCI in male and female mice. While we observed strong sex-dependent differences in the overall brain transcriptome after SCI, the homeostatic microglial phenotype was reduced in both sexes. Chronic SCI increased EV count in the brain and modified their microRNA content, which may explain the observed transcriptional changes. Plasma EV markers were also elevated late after injury, especially in males. Collectively, these experiments are the first to characterize EV dynamics after SCI and suggest that EVs may be involved in posttraumatic brain inflammation.
    Description
    University of Maryland, Baltimore. Neuroscience. Ph.D. 2022.
    Keyword
    extracellular vesicles
    neurodegeneration
    Neuroinflammatory Diseases
    Microglia
    Exosomes
    Spinal Cord Injuries
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/19800
    Collections
    Theses and Dissertations School of Medicine
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.