• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    The Role of Colonization Factors CFA/I and CS21 in Enterotoxigenic E.coli (ETEC) Pathogenesis in the Human Enteroid Model

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Smith_umaryland_0373D_153/Appe ...
    Size:
    1.637Mb
    Format:
    Microsoft Excel 2007
    Download
    Thumbnail
    Name:
    Smith_umaryland_0373D_11382.pdf
    Size:
    10.39Mb
    Format:
    PDF
    Download
    Author
    Smith, Emily cc
    Advisor
    Barry, Eileen M.
    Date
    2022
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Enterotoxigenic Escherichia coli (ETEC) is a primary causative agent of diarrhea in travelers and in young children in low-to-middle income countries (LMICs). ETEC adhere to intestinal epithelia via colonization factors (CFs) and secrete heat-stable toxin (ST) and/or heat-labile toxin (LT), causing dysregulated cellular ion transport and water secretion. ETEC isolates often harbor genes encoding more than one CF and are prime targets as vaccine antigens. Many clinical isolates express CFA/I and CS21; however, a role for CS21 alone or with CFA/I has not been defined. We hypothesize that expression of both CFs confers increased adherence and toxin delivery to the human enteroid. Clinical strains expressing CFA/I and/or CS21 were evaluated, and CF-deficient mutants were engineered. After confirming CF expression using western blot and electron microscopy, assays demonstrated CFA/I was important for CFA/I-CS21 ETEC adherence, as CFA/I-deficient mutants and strains pre-incubated with anti-CFA/I antibody had significantly reduced adherence to enteroid monolayers compared to wildtype. In contrast, CS21 was not required as CS21-deficient mutants and strains pre-incubated with anti-CS21 antibody adhered at similar levels as wildtype. These data demonstrate that targeting CFA/I in CFA/I-CS21 ETEC is sufficient for significant adherence reduction. Delivery of ST by CFA/I-CS21 ETEC was evaluated. Strain-specific levels of toxin delivery were detected but CF-dependent ST delivery was not observed, which may reflect the lack of flow and stretch in the current enteroid model. Upon investigation of host responses to ETEC, the enteroid monolayer integrity was not disrupted, as shown by the increase in transepithelial electrical resistance and the lack of inflammatory cytokines produced. Infection with ETEC strains resulted in decreased mucus (MUC2) production, but this was not CF-dependent. Further studies of strain-specific CFA/I expression revealed that it may be transcriptionally or post-transcriptionally regulated, following observation of nearly identical CFA/I operon sequences and many shared CF-specific regulators at the genomic level. Overall, these data support the role of CFA/I in CFA/I-CS21 ETEC adherence and reinforces CFA/I as a main target for vaccines. These data also highlight the human enteroid model to study ETEC pathogenesis and for evaluation of preclinical therapeutics.
    Description
    University of Maryland, Baltimore. Molecular Microbiology and Immunology. Ph.D. 2022.
    Keyword
    adherence,
    toxin delivery
    gene regulation
    enteroid model
    colonization factors
    Enterotoxigenic Escherichia coli
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/19741
    Collections
    Theses and Dissertations School of Medicine
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.