• Login
    View Item 
    •   UMB Digital Archive
    • UMB Open Access Articles
    • UMB Open Access Articles
    • View Item
    •   UMB Digital Archive
    • UMB Open Access Articles
    • UMB Open Access Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Label-free cell tracking enables collective motion phenotyping in epithelial monolayers

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Publisher version
    View Source
    Access full-text PDFOpen Access
    View Source
    Check access options
    Check access options
    Author
    Gu, Shuyao
    Lee, Rachel M.
    Benson, Zackery
    Ling, Chenyi
    Vitolo, Michele I.
    Martin, Stuart S.
    Chalfoun, Joe
    Losert, Wolfgang
    Date
    2022-07
    Journal
    iScience
    Publisher
    Elsevier
    Type
    Article
    
    Metadata
    Show full item record
    See at
    https://doi.org/10.1016/j.isci.2022.104678
    Abstract
    Collective cell migration is an umbrella term for a rich variety of cell behaviors, whose distinct character is important for biological function, notably for cancer metastasis. One essential feature of collective behavior is the motion of cells relative to their immediate neighbors. We introduce an AI-based pipeline to segment and track cell nuclei from phase-contrast images. Nuclei segmentation is based on a U-Net convolutional neural network trained on images with nucleus staining. Tracking, based on the Crocker-Grier algorithm, quantifies nuclei movement and allows for robust downstream analysis of collective motion. Because the AI algorithm required no new training data, our approach promises to be applicable to and yield new insights for vast libraries of existing collective motion images. In a systematic analysis of a cell line panel with oncogenic mutations, we find that the collective rearrangement metric, D2 min, which reflects non-affine motion, shows promise as an indicator of metastatic potential.
    Rights/Terms
    © 2022
    Keyword
    Cell biology
    Optical imaging
    Technical aspects of cell biology
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/19430
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.isci.2022.104678
    Scopus Count
    Collections
    UMB Open Access Articles

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.