• Login
    View Item 
    •   UMB Digital Archive
    • UMB Open Access Articles
    • UMB Open Access Articles
    • View Item
    •   UMB Digital Archive
    • UMB Open Access Articles
    • UMB Open Access Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    The N-linker region of hERG1a upregulates hERG1b potassium channels.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Publisher version
    View Source
    Access full-text PDFOpen Access
    View Source
    Check access options
    Check access options
    Author
    Johnson, Ashley A
    Crawford, Taylor R
    Trudeau, Matthew C
    Date
    2022-07-04
    Journal
    Journal of Biological Chemistry
    Publisher
    Elsevier
    Type
    Article
    
    Metadata
    Show full item record
    See at
    https://doi.org/10.1016/j.jbc.2022.102233
    Abstract
    A major physiological role of hERG1 (human Ether-á-go-go-Related Gene) potassium channels is to repolarize cardiac action potentials. Two isoforms, hERG1a and hERG1b, associate to form the native cardiac IKr current in vivo. Inherited mutations in hERG1a or hERG1b cause prolonged cardiac repolarization, Long QT Syndrome and sudden death arrhythmia. hERG1a subunits assemble with and enhance the number of hERG1b subunits at the plasma membrane, but the mechanism for the increase in hERG1b by hERG1a is not well understood. Here, we report that the hERG1a N-terminal region expressed in trans with hERG1b markedly increased hERG1b currents and increased biotin-labelled hERG1b protein at the membrane surface. hERG1b channels with a deletion of the N-terminal 1b domain did not have a measurable increase in current or biotinylated protein when co-expressed with hERG1a N-terminal regions, indicating that the 1b domain was required for the increase in hERG1b. Using a biochemical pull-down interaction assay and a FRET hybridization experiment, we detected a direct interaction between the hERG1a N-terminal region and the hERG1b N-terminal region. Using engineered deletions and alanine mutagenesis, we identified a short span of amino acids at positions 216-220 within the hERG1a 'N-linker' region that were necessary for the upregulation of hERG1b. We propose that direct structural interactions between the hERG1a N-linker region and the hERG1b 1b domain increase hERG1b at the plasma membrane. Mechanisms regulating hERG1a and hERG1b are likely critical for cardiac function, may be disrupted by LQTS mutants and serve as potential targets for therapeutics.
    Data Availibility
    Exemplar current recordings, fluorescence spectroscopy traces and Western blot images are all located within the manuscript. All data are contained in plots within the manuscript. Any additional raw data used to generate plots can be requested from Dr. Matt Trudeau (mtrudeau@som.umaryland.edu).
    Rights/Terms
    Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
    Keyword
    FRET
    KCNH2
    Long QT syndrome
    N-linker domain
    PAS domain
    biochemical pull-down interaction assay
    biotinylation
    eag domain
    hERG1a
    hERG1b
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/19348
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.jbc.2022.102233
    Scopus Count
    Collections
    UMB Open Access Articles

    entitlement

    Related articles

    • hERG1a N-terminal eag domain-containing polypeptides regulate homomeric hERG1b and heteromeric hERG1a/hERG1b channels: a possible mechanism for long QT syndrome.
    • Authors: Trudeau MC, Leung LM, Roti ER, Robertson GA
    • Issue date: 2011 Dec
    • hERG1a and hERG1b potassium channel subunits directly interact and preferentially form heteromeric channels.
    • Authors: McNally BA, Pendon ZD, Trudeau MC
    • Issue date: 2017 Dec 29
    • Isoform-specific dominant-negative effects associated with hERG1 G628S mutation in long QT syndrome.
    • Authors: Stump MR, Gong Q, Zhou Z
    • Issue date: 2012
    • Determinants of Isoform-Specific Gating Kinetics of hERG1 Channel: Combined Experimental and Simulation Study.
    • Authors: Perissinotti LL, De Biase PM, Guo J, Yang PC, Lee MC, Clancy CE, Duff HJ, Noskov SY
    • Issue date: 2018
    • hERG1 channel subunit composition mediates proton inhibition of rapid delayed rectifier potassium current (I(Kr)) in cardiomyocytes derived from hiPSCs.
    • Authors: Ukachukwu CU, Jimenez-Vazquez EN, Jain A, Jones DK
    • Issue date: 2023 Feb
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.