Muscle Histopathological Abnormalities in a Patient With a CCT5 Mutation Predicted to Affect the Apical Domain of the Chaperonin Subunit.
Author
Scalia, FedericaBarone, Rosario
Rappa, Francesca
Marino Gammazza, Antonella
Lo Celso, Fabrizio
Lo Bosco, Giosuè
Barone, Giampaolo
Antona, Vincenzo
Vadalà, Maria
Vitale, Alessandra Maria
Donato Mangano, Giuseppe
Amato, Domenico
Sentiero, Giusy
Macaluso, Filippo
Myburgh, Kathryn H
Conway de Macario, Everly
Macario, Alberto J L
Giuffrè, Mario
Cappello, Francesco
Date
2022-06-02Journal
Frontiers in Molecular BiosciencesPublisher
Frontiers Media S.A.Type
Article
Metadata
Show full item recordAbstract
Recognition of diseases associated with mutations of the chaperone system genes, e.g., chaperonopathies, is on the rise. Hereditary and clinical aspects are established, but the impact of the mutation on the chaperone molecule and the mechanisms underpinning the tissue abnormalities are not. Here, histological features of skeletal muscle from a patient with a severe, early onset, distal motor neuropathy, carrying a mutation on the CCT5 subunit (MUT) were examined in comparison with normal muscle (CTR). The MUT muscle was considerably modified; atrophy of fibers and disruption of the tissue architecture were prominent, with many fibers in apoptosis. CCT5 was diversely present in the sarcolemma, cytoplasm, and nuclei in MUT and in CTR and was also in the extracellular space; it colocalized with CCT1. In MUT, the signal of myosin appeared slightly increased, and actin slightly decreased as compared with CTR. Desmin was considerably delocalized in MUT, appearing with abnormal patterns and in precipitates. Alpha-B-crystallin and Hsp90 occurred at lower signals in MUT than in CTR muscle, appearing also in precipitates with desmin. The abnormal features in MUT may be the consequence of inactivity, malnutrition, denervation, and failure of protein homeostasis. The latter could be at least in part caused by malfunction of the CCT complex with the mutant CCT5 subunit. This is suggested by the results of the in silico analyses of the mutant CCT5 molecule, which revealed various abnormalities when compared with the wild-type counterpart, mostly affecting the apical domain and potentially impairing chaperoning functions. Thus, analysis of mutated CCT5 in vitro and in vivo is anticipated to provide additional insights on subunit involvement in neuromuscular disorders.Rights/Terms
Copyright © 2022 Scalia, Barone, Rappa, Marino Gammazza, Lo Celso, Lo Bosco, Barone, Antona, Vadalà, Vitale, Donato Mangano, Amato, Sentiero, Macaluso, Myburgh, Conway de Macario, Macario, Giuffrè and Cappello.Keyword
CCT5CCT5 apical domain
chaperone system
chaperonin
muscle histopathology
neurochaperonopathies
neurodegenerative diseases
neuropathies
Identifier to cite or link to this item
http://hdl.handle.net/10713/19232ae974a485f413a2113503eed53cd6c53
10.3389/fmolb.2022.887336
Scopus Count
Collections
Related articles
- A Novel CCT5 Missense Variant Associated with Early Onset Motor Neuropathy.
- Authors: Antona V, Scalia F, Giorgio E, Radio FC, Brusco A, Oliveri M, Corsello G, Lo Celso F, Vadalà M, Conway de Macario E, Macario AJL, Cappello F, Giuffrè M
- Issue date: 2020 Oct 15
- Biochemical characterization of mutants in chaperonin proteins CCT4 and CCT5 associated with hereditary sensory neuropathy.
- Authors: Sergeeva OA, Tran MT, Haase-Pettingell C, King JA
- Issue date: 2014 Oct 3
- Molecular mechanisms in chaperonopathies: clues to understanding the histopathological abnormalities and developing novel therapies.
- Authors: Macario AJ, de Macario EC
- Issue date: 2020 Jan
- Quantitative analysis of the impact of a human pathogenic mutation on the CCT5 chaperonin subunit using a proxy archaeal ortholog.
- Authors: Spigolon D, Gallagher DT, Velazquez-Campoy A, Bulone D, Narang J, San Biagio PL, Cappello F, Macario AJL, Conway de Macario E, Robb FT
- Issue date: 2017 Dec
- Prokaryotic Chaperonins as Experimental Models for Elucidating Structure-Function Abnormalities of Human Pathogenic Mutant Counterparts.
- Authors: Conway de Macario E, Robb FT, Macario AJ
- Issue date: 2016