• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Biorelevant In Vitro Dissolution Models to Evaluate Poorly Soluble Drugs

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Jamil_umaryland_0373D_11327.pdf
    Embargo:
    2023-01-01
    Size:
    13.43Mb
    Format:
    PDF
    Download
    Author
    Jamil, Raqeeb Golam
    0000-0002-3101-8401
    Advisor
    Polli, James E.
    Date
    2022
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Biorelevant media have been devised to mimic the composition of fluids present in the stomach and intestine in fasted and fed states. They are increasingly being used in pharmaceutical product development and to predict in vivo drug dissolution. Since biorelevant media are more complex, their fabrication has been described as challenging and much remains to be understood about the mechanisms by which they are able to enhance dissolution of poorly soluble drugs. The first aim of this work was to assess the repeatability and reproducibility of current biorelevant media and determine the sources of variability when biorelevant media are used to perform dissolution across different study conditions for two model poorly soluble drugs (i.e., ibuprofen and ketoconazole). The effect of volume on small-volume dissolution using biorelevant media was also predicted. Results indicated favorable interday repeatability, favorable interanalyst repeatability, and favorable interlaboratory reproducibility. Commercial media showed greater interlaboratory reproducibility than “from scratch” media. From a nested and then crossed statistical analysis of variance (ANOVA), the rank-order importance of sources of variation overall were location > operator (nested in location) > day > fabrication method > residual. An algorithm to predict the effect of volume on biorelevant media dissolution in high, intermediate, and low solubility scenarios proved to be accurate in 13 of 16 cases. The second aim of this work was to predict dissolution into fasted and fed state biorelevant media and further devise a new model to predict the food effects on dissolution. Solubility studies, intrinsic dissolution studies, particle size analysis, and high-performance liquid chromatography (HPLC) were used to predict dissolution rate as well as dissolution and solubility enhancement of three model poorly soluble drugs (i.e., griseofulvin, ketoconazole, and ibuprofen) in fasted and fed state gastric and intestinal media over their surfactant-free counterparts. Drug dissolution rate into fed state biorelevant media was attenuated relative to drug solubility enhancement due to low colloid diffusivity. Dissolution enhancement in fasted state media was about as much as solubility enhancement due to minimal incorporation of drug into the mixed micelles. A model was also devised to predict the food effect on dissolution by considering the rate of dissolution in fed state biorelevant media over the rate of dissolution in fasted state biorelevant media and the diffusivity of colloids in each. The resulting model allowed for the prediction of a food effect on dissolution and agreed with food effects observed in vivo for the three model drugs
    Description
    University of Maryland, Baltimore. Pharmaceutical Sciences. Ph.D. 2022.
    Keyword
    Pharmaceutical sciences
    Biorelevant, Dissolution, Griseofulvin, Ibuprofen, Ketoconazole
    Solubility
    Griseofulvin
    Ketoconazole
    Ibuprofen
    Chemistry, Pharmaceutical
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/19175
    Collections
    Theses and Dissertations School of Pharmacy
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.