Noncovalent reversible binding-enabled facile fabrication of leak-free PDMS microfluidic devices without plasma treatment for convenient cell loading and retrieval
Name:
Publisher version
View Source
Access full-text PDFOpen Access
View Source
Check access options
Check access options
Author
Jiang, BinWhite, Alisa
Ou, Wenquan
Van Belleghem, Sarah
Stewart, Samantha
Shamul, James G.
Rahaman, Shaik O.
Fisher, John P.
He, Xiaoming
Date
2022-01-01Journal
Bioactive MaterialsPublisher
KeAi Communications Co.Type
Article
Metadata
Show full item recordAbstract
The conventional approach for fabricating polydimethylsiloxane (PDMS) microfluidic devices is a lengthy and inconvenient procedure and may require a clean-room microfabrication facility often not readily available. Furthermore, living cells can't survive the oxygen-plasma and high-temperature-baking treatments required for covalent bonding to assemble multiple PDMS parts into a leak-free device, and it is difficult to disassemble the devices because of the irreversible covalent bonding. As a result, seeding/loading cells into and retrieving cells from the devices are challenging. Here, we discovered that decreasing the curing agent for crosslinking the PDMS prepolymer increases the noncovalent binding energy of the resultant PDMS surfaces without plasma or any other treatment. This enables convenient fabrication of leak-free microfluidic devices by noncovalent binding for various biomedical applications that require high pressure/flow rates and/or long-term cell culture, by simply hand-pressing the PDMS parts without plasma or any other treatment to bind/assemble. With this method, multiple types of cells can be conveniently loaded into specific areas of the PDMS parts before assembly and due to the reversible nature of the noncovalent bonding, the assembled device can be easily disassembled by hand peeling for retrieving cells. Combining with 3D printers that are widely available for making masters to eliminate the need of photolithography, this facile yet rigorous fabrication approach is much faster and more convenient for making PDMS microfluidic devices than the conventional oxygen plasma-baking-based irreversible covalent bonding method. © 2022 The AuthorsSponsors
National Science FoundationIdentifier to cite or link to this item
http://hdl.handle.net/10713/18344ae974a485f413a2113503eed53cd6c53
10.1016/j.bioactmat.2022.02.031