• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Novel Dental Nanocomposites with Low-Shrinkage-Stress, Ion Recharge, Antibacterial and Remineralization Capabilities to Protect Tooth Structures

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Bhadila_umaryland_0373D_11221.pdf
    Size:
    3.391Mb
    Format:
    PDF
    Download
    Author
    Bhadila, Ghalia Yaseen
    0000-0002-7361-9221
    Advisor
    Xu, Huakun H.
    Weir, Michael D.
    Date
    2021
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    The objectives of this dissertation were to: (1) investigate a bioactive nanocomposite with strong antibacterial and ion-recharge capabilities containing dimethylaminododecyl methacrylate (DMAHDM) and nanoparticles of amorphous calcium phosphate (NACP), and evaluate long-term Ca and P ion recharge by testing for 12 cycles of recharge and release; (2) develop a low-shrinkage-stress (LSS) nanocomposite with antibacterial and remineralization capabilities through the incorporation of DMAHDM and NACP to reduce marginal enamel and dentin demineralization under recurrent caries biofilm-model; (3) investigate the effects of the new composite on biofilm inhibition, mechanical properties, shrinkage stress, degree of conversion, and Ca and P ion releases; and (4) investigate the cytotoxicity of the new LSS composite and its monomers in vitro. For the antibacterial and rechargeable nanocomposite, biofilm lactic acid and colony-forming units (CFU) were measured. Ion recharge was tested for 12 cycles. For the LSS antibacterial and remineralizing nanocomposite, mechanical properties, shrinkage stress, and degree of conversion were evaluated. The growth of Streptococcus mutans and multi-species salivary biofilms was assessed using biofilm CFU, lactic acid production, and confocal laser scanning microscopy. Ca and P ion releases, and human gingival fibroblasts cytotoxicity were measured. The bioactive rechargeable nanocomposite reduced biofilm acid production and viability. High levels of ion releases were maintained throughout 12 cycles of recharge, maintaining steady-state releases without reduction in 6 months, representing long-term remineralization potential. The LSS composite with DMAHDM and NACP had flexural strength matching that of a commercial control composite. The bioactive low-shrinkage-stress composite substantially reduced the biofilm CFU and lactic acid production compared to control composite. The bioactive LSS composite exhibited no significant difference in antibacterial performance before and after three months of aging, demonstrating long-term antibacterial activity. The shrinkage stress of the bioactive low-shrinkage-stress nanocomposite was 36% lower than that of traditional control composite, with similar degrees of conversion. The new bioactive nanocomposite had a satisfactorily low cytotoxic effect toward human gingival fibroblasts and the new monomers had fibroblast viability similar to that of commercial control. The two developed nanocomposites are promising to inhibit recurrent caries and protect the teeth with an intended application for reducing recurrent caries.
    Description
    University of Maryland, Baltimore. Dental Biomedical Sciences, Ph.D. 2021
    Keyword
    antibacterial monomer
    cytotoxicity
    dental nanocomposite
    human teeth
    low-shrinkage-stress
    nanoparticles of amorphous calcium phosphate
    Nanoparticles
    Nanocomposites
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/17985
    Collections
    Theses and Dissertations School of Dentistry
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.