• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Design and Discovery of Novel Small Molecule Inhibitors targeting Heme Oxygenase (HemO) Dependent Iron Acquisition and Heme Signaling in Pseudomonas aeruginosa.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Robinson_umaryland_0373D_11307.pdf
    Size:
    8.392Mb
    Format:
    PDF
    Download
    Author
    Robinson, Elizabeth
    0000-0002-7770-4060
    Advisor
    Wilks, Angela
    Xue, Fengtian, Ph.D.
    Date
    2021
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    The recent rise in antibiotic resistance particularly those pertaining to hospital acquired infections has highlighted the need for alternative therapeutic approaches. Alternative approaches include anti-virulence strategies that differ from current treatments targeting essential pathways in pathogens and instead target systems and factors required for virulence and infection. Gram-negative opportunistic multi-drug resistant (MDR) pathogens like Pseudomonas aeruginosa are ranked at a serious threat level by the CDC and are infamous for causing life threatening infections in immunocompromised populations such as patients with ventilator-assisted pneumonia, open surgical wounds, and cystic fibrosis. Pathogenic bacteria including P. aeruginosa, require the essential micronutrient iron for their survival and virulence. It has been reported that during acute and chronic infections P. aeruginosa preferentially utilizes heme as its iron source over siderophore mechanisms. P. aeruginosa encodes two non-redundant heme uptake systems that both utilize the iron regulated heme oxygenase enzyme (HemO) to release iron and the biliverdin (BVIX) metabolites BVIXβ and -δ. It has been shown that HemO catalytic activity is required to drive heme uptake into the cell. Furthermore, the products of extracellular heme metabolism BVIXβ and -δ function as signaling and regulatory molecules in several virulence traits. Therefore, HemO represents an ideal therapeutic target due to its dual function in limiting both iron and the heme metabolites that regulate several virulence traits. We hypothesize such a dual function strategy will also increase the barrier to resistance. The work herein applies a structure-based design and high-throughput screening approach followed by in vitro and in cell characterization of lead compounds. Further computer-aided drug design (CADD) and guided chemical synthesis optimization were employed to design and discover novel small molecule scaffolds and inhibitors of HemO. The approaches resulted in lead compounds with nanomolar binding affinity and inhibition of HemO enzyme activity both in vitro and in vivo. Additionally, I developed a new method for the production and purification of BVIXβ and -δ, in > 500-fold increased yields, to further study their role in P. aeruginosa virulence and infection.
    Description
    University of Maryland, Baltimore. Pharmaceutical Sciences, Ph.D. 2021
    Keyword
    computer-aided drug design
    novel small molecule inhibitors
    Drug Resistance, Microbial
    Pseudomonas aeruginosa
    Micronutrients
    Iron
    Virulence
    Persistent Infection
    Heme
    Drug Design
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/17975
    Collections
    Theses and Dissertations School of Pharmacy
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.