• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    From Proteases to Antiporters: Advancing Drug Design Efforts with Continuous-Constant pH Molecular Dynamics Simulations

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Henderson_umaryland_0373D_11295.pdf
    Size:
    43.62Mb
    Format:
    PDF
    Download
    Author
    Henderson, Jack Anthony
    0000-0001-6675-7944
    Advisor
    Shen, Jana
    Date
    2021
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Proton-mediated processes play essential roles in biology and human diseases. These processes are challenging to study experimentally and model with traditional simulation techniques because they rely on fixed protonation states. Continuous-constant pH molecular dynamics (CpHMD) is a computer simulation that provides atomic-level details of proton-coupled mechanisms. In this dissertation, several proteases (Beta-secretases 1/2, plasmepsin II, main proteases, and papain-like proteases) and a sodium-proton antiporter (NhaA) are investigated, elucidating protonation states of critical residues and proton-coupled dynamics to aid drug design efforts. In Chapter 2, CpHMD is used to investigate several aspartyl proteases. Human Beta-secretase 1 (BACE1) was considered a lead drug target based on the Beta-amyloid hypothesis for Alzheimer's disease. First, simulations reveal how water plays a vital role in improving the selectivity of an inhibitor for BACE1 over the closely related off-target BACE2. Next, simulations of plasmepsin II, a drug target against malaria, reveal the acid-base role of its catalytic aspartates and how binding of the substrate analog inhibitor pepstatin induces pH-dependent dynamics of its active site. In Chapter 3, simulations of two types of coronavirus cysteine proteases, the papain-like proteases (PLpros) and main proteases (MPros), are performed to aid the broad-spectrum inhibitor design against coronaviruses (CoVs). Here, the protonation states of PLpro from SARS-CoV, SARS-CoV-2, and MERS-CoV reveal the function of the catalytic residues. Moreover, the protonation state of cysteine on the second blocking loop is found to modulate the dynamics of a druggable subpocket. Investigation of the Mpros of SARS-CoV and SARS-CoV-2 uncovers a reactive cysteine residue that covalent inhibitors could target and protonation of a conserved histidine leads to the partial collapse of the S1 pocket. In Chapter 4, simulations are applied to the E. coli sodium-proton antiporter NhaA which facilitates the exchange of two protons for one sodium ion across the lipid bilayer. One proton binding site is generally accepted, while the other is controversial due to a series of mutations study showing retained activity. The simulations show that in the presence of various mutations, an alternative proton binding site can accept the second proton, and long-distance proton coupling occurs in some cases.
    Description
    University of Maryland, Baltimore. Pharmaceutical Sciences. Ph.D. 2021
    Keyword
    Protons
    Sodium-Hydrogen Exchangers
    Amyloid Precursor Protein Secretases
    SARS-CoV-2
    Middle East Respiratory Syndrome Coronavirus
    Mutation
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/17953
    Collections
    Theses and Dissertations School of Pharmacy
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.