Gut microbiome and metabolome in a non-human primate model of chronic excessive alcohol drinking.
Author
Piacentino, DariaGrant-Beurmann, Silvia
Vizioli, Carlotta
Li, Xiaobai
Moore, Catherine F
Ruiz-Rodado, Victor
Lee, Mary R
Joseph, Paule V
Fraser, Claire M
Weerts, Elise M
Leggio, Lorenzo
Date
2021-12-01Journal
Translational PsychiatryPublisher
Springer NatureType
Article
Metadata
Show full item recordAbstract
A relationship between the gut microbiome and alcohol use disorder has been suggested. Excessive alcohol use produces changes in the fecal microbiome and metabolome in both rodents and humans. Yet, these changes can be observed only in a subgroup of the studied populations, and reversal does not always occur after abstinence. We aimed to analyze fecal microbial composition and function in a translationally relevant baboon model of chronic heavy drinking that also meets binge criteria (drinking too much, too fast, and too often), i.e., alcohol ~1 g/kg and blood alcohol levels (BALs) ≥ 0.08 g/dL in a 2-hour period, daily, for years. We compared three groups of male baboons (Papio anubis): L = Long-term alcohol drinking group (12.1 years); S = Short-term alcohol drinking group (2.7 years); and C = Control group, drinking a non-alcoholic reinforcer (Tang®) (8.2 years). Fecal collection took place during 3 days of Drinking (D), followed by a short period (3 days) of Abstinence (A). Fecal microbial alpha- and beta-diversity were significantly lower in L vs. S and C (p's < 0.05). Members of the commensal families Lachnospiraceae and Prevotellaceae showed a relative decrease, whereas the opportunistic pathogen Streptococcus genus showed a relative increase in L vs. S and C (p's < 0.05). Microbiota-related metabolites of aromatic amino acids, tricarboxylic acid cycle, and pentose increased in L vs. S and C (FDR-corrected p < 0.01), with the latter two suggesting high energy metabolism and enhanced glycolysis in the gut lumen in response to alcohol. Consistent with the long-term alcohol exposure, mucosal damage and oxidative stress markers (N-acetylated amino acids, 2-hydroxybutyrate, and metabolites of the methionine cycle) increased in L vs. S and C (FDR-corrected p < 0.01). Overall, S showed few differences vs. C, possibly due to the long-term, chronic alcohol exposure needed to alter the normal gut microbiota. In the three groups, the fecal microbiome barely differed between conditions D and A, whereas the metabolome shifted in the transition from condition D to A. In conclusion, changes in the fecal microbiome and metabolome occur after significant long-term excessive drinking and are only partially affected by acute forced abstinence from alcohol. These results provide novel information on the relationship between the fecal microbiome and metabolome in a controlled experimental setting and using a unique non-human primate model of chronic excessive alcohol drinking.Rights/Terms
© 2021. This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply.Identifier to cite or link to this item
http://hdl.handle.net/10713/17318ae974a485f413a2113503eed53cd6c53
10.1038/s41398-021-01728-6
Scopus Count
Collections
Related articles
- Alcohol-induced changes in the gut microbiome and metabolome of rhesus macaques.
- Authors: Zhang X, Yasuda K, Gilmore RA, Westmoreland SV, Platt DM, Miller GM, Vallender EJ
- Issue date: 2019 May
- Longitudinal analysis of fecal microbiome and metabolome during renal fibrotic progression in a unilateral ureteral obstruction animal model.
- Authors: Hu X, Xie Y, Xiao Y, Zeng W, Gong Z, Du J
- Issue date: 2020 Nov 5
- Longitudinal gut microbiome changes in alcohol use disorder are influenced by abstinence and drinking quantity.
- Authors: Ames NJ, Barb JJ, Schuebel K, Mudra S, Meeks BK, Tuason RTS, Brooks AT, Kazmi N, Yang S, Ratteree K, Diazgranados N, Krumlauf M, Wallen GR, Goldman D
- Issue date: 2020 Nov 1
- Fecal metabonomics combined with 16S rRNA gene sequencing to analyze the changes of gut microbiota in rats with kidney-yang deficiency syndrome and the intervention effect of You-gui pill.
- Authors: Chen R, Wang J, Zhan R, Zhang L, Wang X
- Issue date: 2019 Nov 15
- Alteration of gut microbiota composition by short-term low-dose alcohol intake is restored by fermented rice liquor in mice.
- Authors: Lee JE, Ha JS, Park HY, Lee E
- Issue date: 2020 Feb