• Login
    View Item 
    •   UMB Digital Archive
    • UMB Open Access Articles
    • UMB Open Access Articles
    • View Item
    •   UMB Digital Archive
    • UMB Open Access Articles
    • UMB Open Access Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Behavior of motor units during submaximal isometric contractions in chronically strength-trained individuals

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Author
    Casolo, Andrea
    Del Vecchio, Alessandro
    Balshaw, Thomas G.
    Maeo, Sumiaki
    Lanza, Marcel Bahia
    Felici, Francesco
    Folland, Jonathan P.
    Farina, Dario
    Date
    2021-10-07
    Journal
    Journal of Applied Physiology (Bethesda, Md. : 1985)
    Publisher
    American Physiological Society
    Type
    Article
    
    Metadata
    Show full item record
    See at
    https://doi.org/10.1152/japplphysiol.00192.2021
    Abstract
    Neural and morphological adaptations combine to underpin the enhanced muscle strength following prolonged exposure to strength training, although their relative importance remains unclear. We investigated the contribution of motor unit (MU) behavior and muscle size to submaximal force production in chronically strength-trained athletes (ST) versus untrained controls (UT). Sixteen ST (age: 22.9 ± 3.5 yr; training experience: 5.9 ± 3.5 yr) and 14 UT (age: 20.4 ± 2.3 yr) performed maximal voluntary isometric force (MViF) and ramp contractions (at 15%, 35%, 50%, and 70% MViF) with elbow flexors, whilst high-density surface electromyography (HDsEMG) was recorded from the biceps brachii (BB). Recruitment thresholds (RTs) and discharge rates (DRs) of MUs identified from the submaximal contractions were assessed. The neural drive-to-muscle gain was estimated from the relation between changes in force (DFORCE, i.e. muscle output) relative to changes in MU DR (DDR, i.e. neural input). BB maximum anatomical cross-sectional area (ACSAMAX) was also assessed by MRI. MViF (+64.8% vs. UT, P < 0.001) and BB ACSAMAX (+71.9%, P < 0.001) were higher in ST. Absolute MU RT was higher in ST (+62.6%, P < 0.001), but occurred at similar normalized forces. MU DR did not differ between groups at the same normalized forces. The absolute slope of the ΔFORCE - ΔDR relationship was higher in ST (+66.9%, P = 0.002), whereas it did not differ for normalized values. We observed similar MU behavior between ST athletes and UT controls. The greater absolute force-generating capacity of ST for the same neural input demonstrates that morphological, rather than neural, factors are the predominant mechanism for their enhanced force generation during submaximal efforts. © 2021 American Physiological Society. All rights reserved.
    Keyword
    High-density surface electromyography
    Motor unit behavior
    Neural adaptations
    Neural drive
    Resistance training
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/17311
    ae974a485f413a2113503eed53cd6c53
    10.1152/japplphysiol.00192.2021
    Scopus Count
    Collections
    UMB Open Access Articles

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.