• Login
    View Item 
    •   UMB Digital Archive
    • UMB Open Access Articles
    • UMB Open Access Articles
    • View Item
    •   UMB Digital Archive
    • UMB Open Access Articles
    • UMB Open Access Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Human periodontal ligament stem cell and umbilical vein endothelial cell co-culture to prevascularize scaffolds for angiogenic and osteogenic tissue engineering

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Author
    Zhao, Zeqing
    Sun, Yaxi
    Qiao, Qingchen
    Zhang, Li
    Xie, Xianju
    Weir, Michael D.
    Schneider, Abraham
    Xu, Hockin H.K.
    Zhang, Ning
    Zhang, Ke
    Bai, Yuxing
    Show allShow less

    Date
    2021-11-16
    Journal
    International Journal of Molecular Sciences
    Publisher
    MDPI AG
    Type
    Article
    
    Metadata
    Show full item record
    See at
    https://doi.org/10.3390/ijms222212363
    Abstract
    (1) Background: Vascularization remains a critical challenge in bone tissue engineering. The objective of this study was to prevascularize calcium phosphate cement (CPC) scaffold by coculturing human periodontal ligament stem cells (hPDLSCs) and human umbilical vein endothelial cells (hUVECs) for the first time; (2) Methods: hPDLSCs and/or hUVECs were seeded on CPC scaffolds. Three groups were tested: (i) hUVEC group (hUVECs on CPC); (ii) hPDLSC group (hPDLSCs on CPC); (iii) co-culture group (hPDLSCs + hUVECs on CPC). Osteogenic differentiation, bone mineral synthesis, and microcapillary-like structures were evaluated; (3) Results: Angiogenic gene expressions of co-culture group were 6–9 fold those of monoculture. vWF expression of co-culture group was 3 times lower than hUVEC-monoculture group. Osteogenic expressions of co-culture group were 2–3 folds those of the hPDLSC-monoculture group. ALP activity and bone mineral synthesis of co-culture were much higher than hPDLSC-monoculture group. Co-culture group formed capillary-like structures at 14–21 days. Vessel length and junction numbers increased with time; (4) Conclusions: The hUVECs + hPDLSCs co-culture on CPC scaffold achieved excellent osteogenic and angiogenic capability in vitro for the first time, generating prevascularized networks. The hPDLSCs + hUVECs co-culture had much better osteogenesis and angiogenesis than monoculture. CPC scaffolds prevacularized via hPDLSCs + hUVECs are promising for dental, craniofacial, and orthopedic applications. © 2021 by the authors.
    Sponsors
    National Natural Science Foundation of China
    Keyword
    Bone tissue engineering
    Calcium phosphate scaffold
    Co-culture
    Endothelial cells
    Human periodontal ligament stem cells
    Prevascularization
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/17248
    ae974a485f413a2113503eed53cd6c53
    10.3390/ijms222212363
    Scopus Count
    Collections
    UMB Open Access Articles

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.