Show simple item record

dc.contributor.authorEshaghzadeh Torbati, Mahbaneh
dc.contributor.authorMinhas, Davneet S
dc.contributor.authorAhmad, Ghasan
dc.contributor.authorO'Connor, Erin E
dc.contributor.authorMuschelli, John
dc.contributor.authorLaymon, Charles M
dc.contributor.authorYang, Zixi
dc.contributor.authorCohen, Ann D
dc.contributor.authorAizenstein, Howard J
dc.contributor.authorKlunk, William E
dc.contributor.authorChristian, Bradley T
dc.contributor.authorHwang, Seong Jae
dc.contributor.authorCrainiceanu, Ciprian M
dc.contributor.authorTudorascu, Dana L
dc.date.accessioned2021-11-18T18:28:18Z
dc.date.available2021-11-18T18:28:18Z
dc.date.issued2021-11-01
dc.identifier.urihttp://hdl.handle.net/10713/17150
dc.description.abstractModern neuroimaging studies frequently combine data collected from multiple scanners and experimental conditions. Such data often contain substantial technical variability associated with image intensity scale (image intensity scales are not the same in different images) and scanner effects (images obtained from different scanners contain substantial technical biases). Here we evaluate and compare results of data analysis methods without any data transformation (RAW), with intensity normalization using RAVEL, with regional harmonization methods using ComBat, and a combination of RAVEL and ComBat. Methods are evaluated on a unique sample of 16 study participants who were scanned on both 1.5T and 3T scanners a few months apart. Neuroradiological evaluation was conducted for 7 different regions of interest (ROI's) pertinent to Alzheimer's disease (AD). Cortical measures and results indicate that: (1) RAVEL substantially improved the reproducibility of image intensities; (2) ComBat is preferred over RAVEL and the RAVEL-ComBat combination in terms of regional level harmonization due to more consistent harmonization across subjects and image-derived measures; (3) RAVEL and ComBat substantially reduced bias compared to analysis of RAW images, but RAVEL also resulted in larger variance; and (4) the larger root mean square deviation (RMSD) of RAVEL compared to ComBat is due mainly to its larger variance.en_US
dc.description.urihttps://doi.org/10.1016/j.neuroimage.2021.118703en_US
dc.language.isoenen_US
dc.publisherElsevier Inc.en_US
dc.relation.ispartofNeuroImageen_US
dc.rightsCopyright © 2021. Published by Elsevier Inc.en_US
dc.subjectAlzheimer's diseaseen_US
dc.subjectHarmonizationen_US
dc.subjectMRIen_US
dc.subjectNormalizationen_US
dc.subjectScanner effectsen_US
dc.titleA multi-scanner neuroimaging data harmonization using RAVEL and ComBaten_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.neuroimage.2021.118703
dc.identifier.pmid34736996
dc.source.volume245
dc.source.beginpage118703
dc.source.endpage
dc.source.countryUnited States


Files in this item

Thumbnail
Name:
Publisher version

This item appears in the following Collection(s)

Show simple item record