• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    The Kv2.2 voltage-gated potassium channel: From the gene to its potential physiological role in arousal

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Hermanstyne_umaryland_0373D_10 ...
    Size:
    42.46Mb
    Format:
    PDF
    Download
    Author
    Hermanstyne, Tracey
    Advisor
    Misonou, Hiroaki
    Mong, Jessica Aurora
    Date
    2012
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Voltage-gated potassium (Kv) channels are involved in various physiological processes such as repolarization of neuronal and cardiac action potentials, calcium signaling, cellular proliferation, migration and behavioral rhythms. These channels exhibit distinct biophysical and biochemical characteristics primarily through the formation of heteromeric tetramers into a functional channel. Mammalian Kv2 delayed rectifier channels are, however, the unique exception in this subfamily because previous studies have shown these isotypes are localized in distinct domains of neuronal membranes and lack the capability to form heteromeric channels. In this dissertation, we report a novel form of rat Kv2.2, which has not been previously recognized. Our data indicate that this novel form of Kv2.2 is indeed the predominant form expressed in the brain and is co-localized in the same neuronal membrane domains with Kv2.1. In addition, co-immunoprecipitation and electrophysiology experiments showed that Kv2.1 and Kv2.2 are capable of forming heteromeric channels. However, through specific immunostaining, we found that Kv2.2 is expressed in a specific set of neurons, which have negligible levels of Kv2.1, suggesting a unique physiological role of Kv2.2. These neurons are located in the magnocellular peroptic area (MCPO) and the horizontal limb of diagonal band of Broca (HDB) of the basal forebrain (BF). It has been shown that the MCPO/HDB are implicated in the regulation of cortical activity and the sleep-wake cycle. Using specific immunolabeling and knock-in mice in which GFP is expressed in GABAergic neurons, we found that Kv2.2 is abundantly expressed in a sub-population of GABAergic neurons in this region which establishes Kv2.2 as a molecular target to study the role of this specific sub-population of BF GABAergic neurons. In conclusion we hypothesize, that the Kv2.2-GABAergic neurons has a functional role in the regulation of the sleep-wake cycle. Using c-FOS immunolabeling and polysomnographic recordings of Kv2.2 knockout mice, we found that Kv2.2-GABAergic neurons are preferentially active during the wake state and that the knockout mice exhibit an increase wakefulness phenotype, respectively. Taken all together, these results challenges the present dogma of Kv2 channels as well as reveal a significant aspect of BF GABAergic neurons in the promotion of wakefulness.
    Description
    University of Maryland, Baltimore. Neuroscience. Ph.D. 2012
    Keyword
    arousal
    Kv2.2
    Basal Forebrain
    GABAergic Neurons
    Shab Potassium Channels
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/1673
    Collections
    Theses and Dissertations All Schools
    Theses and Dissertations School of Medicine

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.