Additive quantile mixed effects modelling with application to longitudinal CD4 count data
Date
2021-09-09Journal
Scientific ReportsPublisher
Springer NatureType
Article
Metadata
Show full item recordAbstract
Quantile regression offers an invaluable tool to discern effects that would be missed by other conventional regression models, which are solely based on modeling conditional mean. Quantile regression for mixed-effects models has become practical for longitudinal data analysis due to the recent computational advances and the ready availability of efficient linear programming algorithms. Recently, quantile regression has also been extended to additive mixed-effects models, providing an efficient and flexible framework for nonparametric as well as parametric longitudinal forms of data analysis focused on features of the outcome beyond its central tendency. This study applies the additive quantile mixed model to analyze the longitudinal CD4 count of HIV-infected patients enrolled in a follow-up study at the Centre of the AIDS Programme of Research in South Africa. The objective of the study is to justify how the procedure developed can obtain robust nonlinear and linear effects at different conditional distribution locations. With respect to time and baseline BMI effect, the study shows a significant nonlinear effect on CD4 count across all fitted quantiles. Furthermore, across all fitted quantiles, the effect of the parametric covariates of baseline viral load, place of residence, and the number of sexual partners was found to be major significant factors on the progression of patients' CD4 count who had been initiated on the Highly Active Antiretroviral Therapy study.Rights/Terms
© 2021. The Author(s).Identifier to cite or link to this item
http://hdl.handle.net/10713/16652ae974a485f413a2113503eed53cd6c53
10.1038/s41598-021-97114-9
Scopus Count
Collections
Related articles
- Application of quantile mixed-effects model in modeling CD4 count from HIV-infected patients in KwaZulu-Natal South Africa.
- Authors: Yirga AA, Melesse SF, Mwambi HG, Ayele DG
- Issue date: 2022 Jan 4
- Joint modelling of longitudinal and time-to-event data: an illustration using CD4 count and mortality in a cohort of patients initiated on antiretroviral therapy.
- Authors: Mchunu NN, Mwambi HG, Reddy T, Yende-Zuma N, Naidoo K
- Issue date: 2020 Mar 30
- Effects of Antiretroviral Therapy on CD4+ Cell Count, HIV Viral Load and Death in a South African Cohort: A Modelling Study.
- Authors: Shoko C, Chikobvu D, Bessong PO
- Issue date: 2020 Mar
- Joint longitudinal data analysis in detecting determinants of CD4 cell count change and adherence to highly active antiretroviral therapy at Felege Hiwot Teaching and Specialized Hospital, North-west Ethiopia (Amhara Region).
- Authors: Seyoum A, Ndlovu P, Temesgen Z
- Issue date: 2017 Mar 16
- Modelling CD4 counts before and after HAART for HIV infected patients in KwaZulu-Natal South Africa.
- Authors: Yirga AA, Melesse SF, Mwambi HG, Ayele DG
- Issue date: 2020 Dec