Date
2021-05Journal
Annals of Translational MedicinePublisher
AME Publishing CompanyType
Article
Metadata
Show full item recordAbstract
AI has, to varying degrees, affected all aspects of molecular imaging, from image acquisition to diagnosis. During the last decade, the advent of deep learning in particular has transformed medical image analysis. Although the majority of recent advances have resulted from neural-network models applied to image segmentation, a broad range of techniques has shown promise for image reconstruction, image synthesis, differential-diagnosis generation, and treatment guidance. Applications of AI for drug design indicate the way forward for using AI to facilitate molecular-probe design, which is still in its early stages. Deep-learning models have demonstrated increased efficiency and image quality for PET reconstruction from sinogram data. Generative adversarial networks (GANs), which are paired neural networks that are jointly trained to generate and classify images, have found applications in modality transformation, artifact reduction, and synthetic-PET-image generation. Some AI applications, based either partly or completely on neural-network approaches, have demonstrated superior differential-diagnosis generation relative to radiologists. However, AI models have a history of brittleness, and physicians and patients may not trust AI applications that cannot explain their reasoning. To date, the majority of molecular-imaging applications of AI have been confined to research projects, and are only beginning to find their ways into routine clinical workflows via commercialization and, in some cases, integration into scanner hardware. Evaluation of actual clinical products will yield more realistic assessments of AI's utility in molecular imaging.Rights/Terms
2021 Annals of Translational Medicine. All rights reserved.Identifier to cite or link to this item
http://hdl.handle.net/10713/16331ae974a485f413a2113503eed53cd6c53
10.21037/atm-20-6191
Scopus Count
Collections
Related articles
- Combating COVID-19 Using Generative Adversarial Networks and Artificial Intelligence for Medical Images: Scoping Review.
- Authors: Ali H, Shah Z
- Issue date: 2022 Jun 29
- Generative Adversarial Networks: A Primer for Radiologists.
- Authors: Wolterink JM, Mukhopadhyay A, Leiner T, Vogl TJ, Bucher AM, Išgum I
- Issue date: 2021 May-Jun
- Narrative review of generative adversarial networks in medical and molecular imaging.
- Authors: Koshino K, Werner RA, Pomper MG, Bundschuh RA, Toriumi F, Higuchi T, Rowe SP
- Issue date: 2021 May
- Generative Adversarial Networks in Brain Imaging: A Narrative Review.
- Authors: Laino ME, Cancian P, Politi LS, Della Porta MG, Saba L, Savevski V
- Issue date: 2022 Mar 23
- A review on AI in PET imaging.
- Authors: Matsubara K, Ibaraki M, Nemoto M, Watabe H, Kimura Y
- Issue date: 2022 Feb