Drosophila, a powerful model to study virus-host interactions and pathogenicity in the fight against SARS-CoV-2
Date
2021-06-13Journal
Cell & BiosciencePublisher
Springer NatureType
Article
Metadata
Show full item recordAbstract
The COVID-19 pandemic is having a tremendous impact on humanity. Although COVID-19 vaccines are showing promising results, they are not 100% effective and resistant mutant SARS-CoV-2 strains are on the rise. To successfully fight against SARS-CoV-2 and prepare for future coronavirus outbreaks, it is essential to understand SARS-CoV-2 protein functions, their host interactions, and how these processes convey pathogenicity at host tissue, organ and systemic levels. In vitro models are valuable but lack the physiological context of a whole organism. Current animal models for SARS-CoV-2 research are exclusively mammals, with the intrinsic limitations of long reproduction times, few progeny, ethical concerns and high maintenance costs. These limitations make them unsuitable for rapid functional investigations of virus proteins as well as genetic and pharmacological screens. Remarkably, 90% of the SARS-CoV-2 virus-host interacting proteins are conserved between Drosophila and humans. As a well-established model system for studying human diseases, the fruit fly offers a highly complementary alternative to current mammalian models for SARS-CoV-2 research, from investigating virus protein function to developing targeted drugs. Herein, we review Drosophila's track record in studying human viruses and discuss the advantages and limitations of using fruit flies for SARS-CoV-2 research. We also review studies that already used Drosophila to investigate SARS-CoV-2 protein pathogenicity and their damaging effects in COVID-19 relevant tissues, as well as studies in which the fly was used as an efficient whole animal drug testing platform for targeted therapeutics against SARS-CoV-2 proteins or their host interacting pathways.Keyword
Animal modelsCoronavirus
Drosophila
Primary determinants of pathogenicity
SARS-CoV-2
Virus-host interactions
Identifier to cite or link to this item
http://hdl.handle.net/10713/16039ae974a485f413a2113503eed53cd6c53
10.1186/s13578-021-00621-5
Scopus Count
Related articles
- Functional analysis of SARS-CoV-2 proteins in Drosophila identifies Orf6-induced pathogenic effects with Selinexor as an effective treatment.
- Authors: Zhu JY, Lee JG, van de Leemput J, Lee H, Han Z
- Issue date: 2021 Mar 25
- Conserved Genomic Terminals of SARS-CoV-2 as Coevolving Functional Elements and Potential Therapeutic Targets.
- Authors: Chan AP, Choi Y, Schork NJ
- Issue date: 2020 Nov 25
- Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: What molecular dynamics studies of virus-host interactions reveal.
- Authors: Fantini J, Chahinian H, Yahi N
- Issue date: 2020 Aug
- Novel Immunoglobulin Domain Proteins Provide Insights into Evolution and Pathogenesis of SARS-CoV-2-Related Viruses.
- Authors: Tan Y, Schneider T, Leong M, Aravind L, Zhang D
- Issue date: 2020 May 29
- Current status of antivirals and druggable targets of SARS CoV-2 and other human pathogenic coronaviruses.
- Authors: Artese A, Svicher V, Costa G, Salpini R, Di Maio VC, Alkhatib M, Ambrosio FA, Santoro MM, Assaraf YG, Alcaro S, Ceccherini-Silberstein F
- Issue date: 2020 Dec