• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Muscle-specific and fiber type-specific regulation of the gene encoding the human slow-twitch skeletal muscle-specific isoform of troponin I

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Find Full text
    Author
    Corin, Shari Jill
    Advisor
    Wade, Robert P.
    Date
    1995
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Muscle-specific contractile proteins are encoded by multigene families, most of whose members are differentially expressed in fast versus slow twitch myofibers. This fiber type-specific gene regulation occurs by unknown mechanisms, and is not observed within cultured myocytes. Hence, the only means by which to study fiber type-specific gene regulation has been by generating numerous lines of transgenic mice, which is expensive and laborious. The goal of these studies was to develop an improved system by which the molecular mechanisms of fiber type-specific gene regulation could be dissected. The gene encoding the human slow twitch skeletal muscle-specific isoform of troponin I (TnI{dollar}\sb{lcub}\rm s{rcub}{dollar}) was chosen as a model gene, because expression of TnI{dollar}\sb{lcub}\rm s{rcub}{dollar} is largely restricted to slow twitch myofibers in adult mammals. Structural analysis showed that the TnI{dollar}\sb{lcub}\rm s{rcub}{dollar} gene contains nine exons spanning 12.5 kilobases. Transcriptional analysis revealed two transcription initiation sites. A muscle-specific promoter and a muscle-specific enhancer were identified 5' to the TnI{dollar}\sb{lcub}\rm s{rcub}{dollar} transcription initiation region. Next, an assay by which to identify DNA elements involved in fiber type-specific gene regulation was developed: this assay employs gene transfer into the muscles of live rats. A plasmid-borne luciferase reporter gene fused to various muscle-specific contractile gene promoters was differentially expressed when injected into slow versus fast twitch rat muscle: the luciferase gene was preferentially expressed in slow muscle when fused to a TnI{dollar}\sb{lcub}\rm s{rcub}{dollar} promoter, and conversely, was preferentially expressed in fast muscle when fused to a fast troponin C promoter. In contrast, the luciferase gene was equally well-expressed by both muscle types when fused to a non-fiber type-specific skeletal actin promoter. Deletion analysis of the TnI{dollar}\sb{lcub}\rm s{rcub}{dollar} promoter region revealed that the 157 base pair muscle-specific enhancer conferred slow muscle-preferential activity upon a minimal thymidine kinase promoter. Transgenic analysis confirmed the role of this enhancer in restricting gene expression to slow twitch myofibers. This delineation of a fiber type-specific control element represents a significant advance toward understanding fiber type-specific gene regulation at the molecular level. Hence, somatic gene transfer may be used to rapidly define elements that direct myofiber type-specific gene expression, prior to the generation of transgenic mice.
    Description
    University of Maryland, Baltimore. Molecular and Cell Biology. Ph.D. 1995
    Keyword
    Biology, Molecular
    Biology, Cell
    fiber type-specific gene regulation
    Gene Expression Regulation
    Muscle Fibers, Slow-Twitch
    Troponin I
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/1568
    Collections
    Theses and Dissertations School of Medicine
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.