• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Calcium sparks: Elementary events underlying excitation-contraction coupling in heart muscle

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Find Full text
    Author
    Cheng, Heping
    Date
    1995
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Spontaneous local increases in the concentration of intracellular calcium ( (Ca{dollar}\sp{lcub}2+{rcub}\rbrack \rm\sb{lcub}i{rcub}{dollar}), called "calcium sparks", were detected in quiescent rat heart cells with a confocal laser scanning microscope and the fluorescent calcium indicator fluo-3. A calcium spark is associated with an elevation of (Ca{dollar}\sp{lcub}2+{rcub}\rbrack \rm\sb{lcub}i{rcub}{dollar} by {dollar}\sim{dollar}200 nM within a volume of {dollar}\sim{dollar}10 fl, and to decline with an half time of {dollar}\sim{dollar}20 msec. Estimates of calcium flux associated with the local increase in (Ca{dollar}\sp{lcub}2+{rcub}\rbrack \rm\sb{lcub}i{rcub}{dollar} suggest that calcium sparks arise from the spontaneous openings of single or a few sarcoplasmic reticulum (SR) calcium-release channels (also known as ryanodine receptors, RyRs) acting in concert, a finding supported by ryanodine modification of spark kinetics. Thus calcium sparks represent the functional elementary events of the SR release of calcium. By measuring the occurrence of calcium, the in vivo open probability of RyR/channels is shown to be around 0.0001 S{dollar}\sp{lcub}-1{rcub}{dollar} at resting (Ca{dollar}\sp{lcub}2+{rcub}\rbrack \rm\sb{lcub}i{rcub}{dollar}. It is generally agreed that during cardiac excitation-contraction (EC) coupling, calcium release from the SR is triggered by the sarcolemmal calcium current (I{dollar}\rm\sb{lcub}Ca{rcub}{dollar}) via the calcium-induced calcium release mechanism. However, it is unclear how a mechanism with intrinsic positive feedback can provide graded responses. This work reveals, for the first time, that at the microscopic level, EC coupling takes the form of I{dollar}\rm\sb{lcub}Ca{rcub}{dollar}-evoked calcium sparks. Direct visualization of evoked calcium sparks was possible when I{dollar}\rm\sb{lcub}Ca{rcub}{dollar} was reduced by calcium channel antagonists D600 or cadmium, or during small ramp depolarization under whole-cell voltage-clamp conditions. These evoked calcium sparks resemble spontaneous calcium sparks observed at rest, in amplitude and in spatio-temporal properties. The activation of calcium sparks is controlled by local I{dollar}\rm\sb{lcub}Ca{rcub}{dollar} in a stochastic manner. Once activated, calcium release from the SR during a calcium spark is essentially independent of the triggering calcium influx and does not activate neighboring SR release sites. These novel findings are used to develop a new mechanistic model for cardiac EC coupling in which the graded amplification of the triggering I{dollar}\rm\sb{lcub}Ca{rcub}{dollar} by the SR can be explained by altering the extent of spatial and temporal summation of the elementary release events.
    Description
    University of Maryland, Baltimore. Ph.D. 1995
    Keyword
    Biology, Molecular
    Biology, Animal Physiology
    Calcium Signaling
    Excitation Contraction Coupling
    Myocardium
    Rats
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/1513
    Collections
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.