Show simple item record

dc.contributor.authorSears, K T
dc.contributor.authorGalen, J E
dc.contributor.authorTennant, S M
dc.date.accessioned2021-04-09T11:40:41Z
dc.date.available2021-04-09T11:40:41Z
dc.date.issued2021-03-04
dc.identifier.urihttp://hdl.handle.net/10713/15127
dc.description.abstractSalmonella spp. are important human pathogens globally causing millions of cases of typhoid fever and non-typhoidal salmonellosis annually. There are only a few vaccines licensed for use in humans which all target Salmonella enterica serovar Typhi. Vaccine development is hampered by antigenic diversity between the thousands of serovars capable of causing infection in humans. However, a number of attenuated candidate vaccine strains are currently being developed. As facultative intracellular pathogens with multiple systems for transporting effector proteins to host cells, attenuated Salmonella strains can also serve as ideal tools for the delivery of foreign antigens to create multivalent live carrier vaccines for simultaneous immunization against several unrelated pathogens. Further, the ease with which Salmonella can be genetically modified and the extensive knowledge of the virulence mechanisms of this pathogen means that this bacterium has often served as a model organism to test new approaches. In this review we focus on (1) recent advances in live attenuated Salmonella vaccine development, (2) improvements in expression of foreign antigens in carrier vaccines and (3) adaptation of attenuated strains as sources of purified antigens and vesicles that can be used for subunit and conjugate vaccines or together with attenuated vaccine strains in heterologous prime-boosting immunization strategies. These advances have led to the development of new vaccines against Salmonella which have or will soon be tested in clinical trials. © 2021 The Authors.en_US
dc.description.urihttps://doi.org/10.1111/jam.15055en_US
dc.language.isoenen_US
dc.publisherWiley-Blackwellen_US
dc.relation.ispartofJournal of Applied Microbiologyen_US
dc.rights© 2021 The Authors. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.en_US
dc.subject.meshSalmonella Infections--prevention & controlen_US
dc.subject.meshSamonella Vaccinesen_US
dc.titleAdvances in the development of Salmonella-based vaccine strategies for protection against Salmonellosis in humansen_US
dc.typeArticleen_US
dc.identifier.doi10.1111/jam.15055
dc.identifier.pmid33665941
dc.source.countryUnited Kingdom
dc.source.countryEngland


This item appears in the following Collection(s)

Show simple item record