• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    From Nanoparticles to Zinc Finger Proteins to Electronic Nicotine Delivery Systems: The Clinical and Biomolecular Evaluation of Potentially Toxic Heavy Metals

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Brandis_umaryland_0373D_11216.pdf
    Size:
    12.22Mb
    Format:
    PDF
    Download
    Author
    Brandis, Joel cc
    0000-0003-2163-5243
    Advisor
    Michel, Sarah L. J.
    Date
    2020
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Physicochemical Properties of Sodium Ferric Gluconate There are concerns that differences in iron release between brand sodium ferric gluconate (SFG) (Ferrlecit) and generic SFG (generic SFG) intravenous (IV) iron nanoparticle drugs, which are used to treat chronic kidney disease can be caused by differences in the products’ physicochemical properties. However, a standardized, SFG product specific, physicochemical measurement regulatory guidance is not available. Iron core measurements including optical spectroscopy, ICP-MS, XRPD, 57Fe Mössbauer spectroscopy, and XAS, found both products’ cores to be similar ferric-iron-oxide structures. Measurements focused on the carbohydrate shell including forced acid degradation, concentration dependent DLS, AUC, and GPC found differences in particle size, acid stability/iron lability, and molecular weight distribution, that may impact iron release. Cadmium Targeting of Tristetraprolin Zinc finger (ZF) proteins regulate inflammation and are a potential target for cadmium. Zinc bound double Cys3His domain ZF protein tristetraprolin (TTP) regulates inflammation by binding to AU-rich cytokine mRNA. Using a TTP peptide (TTP-2D), Zn2-TTP-2D, cadmium was observed to displace Zn in a concentration dependent manner by spin-filter/ICP-MS coupled to native ESI-MS. Cadmium was also found to displace zinc from RNA bound Zn2-TTP-2D complex (Zn2-TTP-2D/RNA) by ESI in a concentration dependent manner, resulting in Cd1Zn1-TTP-2D/RNA and Cd2-TTP-2D/RNA complexes. Using fluorescence anisotropy cadmium displacement of zinc from Zn2-TTP-2D/RNA complex did not disrupt RNA binding. E-Cig E-liquid Matrix’s Effect on Metal Aerosolization Potentially toxic levels of metals, such as chromium, nickel, copper, and lead, have been reported in e-liquids (liquids composed primarily of a mixture of propylene glycol (PG), glycerol (G)) and nicotine, and generated aerosols of electronic nicotine delivery systems (ENDS). However, the variables that affect metal transfer from the e-liquid to the aerosols are unknown. Using a custom ENDS aerosolization device and aerosolization approach, following CORESTA 81 guidance, the aerosolization of metal spiked model e-liquids (PG and G) were measured. Using ICP-MS to measure aerosol metal content to determine the effect of e-liquid on chromium, nickel, copper, and lead, it was found that all four metals are more readily aerosolized in PG dominant e-liquids than G dominant e-liquids.
    Description
    Pharmaceutical Sciences
    University of Maryland, Baltimore
    Ph.D.
    Keyword
    cadmium toxicity
    zinc finger proteins
    Electronic Nicotine Delivery Systems
    Inflammation
    Nanomedicine
    Tristetraprolin
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/14496
    Collections
    Theses and Dissertations School of Pharmacy
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.