• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Determining the Mechanism and Regulation of the Heme Assimilation System (Has) in Pseudomonas aeruginosa Heme Signaling and Acquisition

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Dent_umaryland_0373D_11195.pdf
    Size:
    8.990Mb
    Format:
    PDF
    Download
    Author
    Dent, Alecia T.
    0000-0002-6376-7482
    Advisor
    Wilks, Angela
    Date
    2020
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that causes infections in immunocompromised populations including patients with cystic fibrosis, surgical site wounds and pneumonia. Like most other bacterial pathogens, Pseudomonas requires iron for survival and virulence and has adapted several mechanisms including utilizing heme as an iron source. P. aeruginosa encodes two nonredundant heme uptake systems, the heme assimilation system (has) and Pseudomonas heme utilization (phu) pathways. Proteomic and RNA seq analysis of P. aeruginosa show the Has pathway is one of the most upregulated during infection and knockout strains of HasR reduce the pathogenicity of the bacteria in mice elevating it as a potential drug target. Despite previous studies of the S. marcescens Has pathway there has been no comprehensive study of the molecular mechanism by which heme is sensed and transported by the Has pathway. The work herein utilizes a combination of site-directed mutagenesis of the extracellular hemophore HasAp, allelic exchange, quantitative PCR analyses, immunoblotting and 13C-heme uptake studies to elucidate both the mechanism of heme release from HasAp to HasR and its requirement for initiation of the extracellularcytoplasmic function (ECF) HasIS sigma/anti-sigma factor system. Furthermore, I show in contrast to the S. marcescens system the hasIS operon is not subject to autoregulation by HasI, but rather post-transcriptional regulation through modulation of HasAp. Employing similar approaches with the outer membrane receptor HasR, I determined heme capture by H221 on the plug domain of HasR is required for signaling and transport, whereas mutations to the extracellular FRAP/PNPL loop H624 and L8 loop Ile694 are competent to signal but not transport heme. Based on my studies, I propose a model for heme signaling and transport by the P. aeruginosa Has system that provides a foundation for further studies of heme uptake and a starting point for the development of novel antimicrobial strategies.
    Description
    Pharmaceutical Sciences
    University of Maryland, Baltimore
    Ph.D.
    Keyword
    heme assimilation system
    Heme
    Pseudomonas aeruginosa--pathogenicity
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/14472
    Collections
    Theses and Dissertations School of Pharmacy
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.