• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Regulation of Schwann cell phenotype by sublytic terminal complement complexes

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Find Full text
    Author
    Dashiell, Suzanne Marie
    Advisor
    Koski, Carol Lee
    Shin, Moon L. (Moon Lee), 1938-
    Date
    1998
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    The complement cascade consists of effector and regulatory proteins that mediate humoral immunity and inflammation. Complement activation signals cell death but in sublytic concentrations, C5b-9 ((or terminal complement complexes (TCC)) activates cells without cytolysis. During peripheral nerve injury, sublytic TCC insertion in Schwann cell (SchC)/myelin membrane mediates membrane splitting and vesiculation, but with continued SchC survival. Resulting loss of SchC/axonal contact profoundly alters SchC phenotype through decreased expression of critical myelin proteins, and robust proliferation. We propose that sublytic TCC stimulate these phenotypic changes. We examined whether sublytic TCC downregulated expression of the myelin genes protein zero (Po) and myelin basic protein (MBP). Terminally-differentiated SchC passaged in vitro expressed high levels of Po and MBP mRNAs and protein. Po and MBP mRNAs were downregulated 60-80% over 6 hours by sublytic TCC. Sublytic TCC induced a rapid, but incomplete, degradation of an otherwise stable Po mRNA. Expression of a Po promoter/luciferase reporter construct transiently transfected into SchC was reduced 70% by TCC at 6 hours. TCC also differentially regulated the expression of c-jun and SCIP, two transcription factors that repress Po expression. We then investigated whether sublytic TCC stimulated proliferation and survival. SchC incubated in a serum-free defined medium for 24 hours synchronized 90% of SchC into G1/G0 phase of the cell cycle. TCC drove 49% of SchC into S phase, and also induced DNA synthesis. Furthermore, TCC induced proliferation by doubling SchC numbers. These effects were mediated by signaling pathways involving Gi proteins, ERK, PKC, p70 S6 kinase, but not PKA. Finally, we examined whether TCC could prevent SchC apoptosis. Incubation in defined medium caused 40-50% SchC death within 24 hours that was circumvented by the addition of beta-neuregulin. Likewise, TCC dramatically reduced the number of apoptotic cells to 5%, and mediated its effects through G proteins, ERK, and PKC pathways. Our data collectively suggest that sublytic TCC, although contributing to demyelination by downregulating myelin gene expression, also promote apoptotic rescue and mitosis, critical in repair and remyelination of peripheral nerve during inflammation, trauma, and Wallerian degeneration.
    Description
    University of Maryland, Baltimore. Pathology. Ph.D. 1998
    Keyword
    Biology, Neuroscience
    Biology, Cell
    Health Sciences, Immunology
    Complement Activation
    Complement Membrane Attack Complex
    Complement System Proteins
    Myelin Sheath--immunology
    Schwann Cells
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/1380
    Collections
    Theses and Dissertations All Schools
    Theses and Dissertations School of Medicine

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.