• Login
    View Item 
    •   UMB Digital Archive
    • UMB Open Access Articles
    • UMB Open Access Articles
    • View Item
    •   UMB Digital Archive
    • UMB Open Access Articles
    • UMB Open Access Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Characterizing the complexity of weighted networks via graph embedding and point pattern analysis

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Author
    Chen, Shuo
    Zhang, Zhen
    Mo, Chen
    Wu, Qiong
    Kochunov, Peter
    Hong, L. Elliot
    Date
    2020-09-01
    Journal
    Entropy
    Publisher
    MDPI AG
    Type
    Article
    
    Metadata
    Show full item record
    See at
    https://doi.org/10.3390/E22090925
    Abstract
    We propose a new metric to characterize the complexity of weighted complex networks. Weighted complex networks represent a highly organized interactive process, for example, co-varying returns between stocks (financial networks) and coordination between brain regions (brain connectivity networks). Although network entropy methods have been developed for binary networks, the measurement of non-randomness and complexity for large weighted networks remains challenging. We develop a new analytical framework to measure the complexity of a weighted network via graph embedding and point pattern analysis techniques in order to address this unmet need. We first perform graph embedding to project all nodes of the weighted adjacency matrix to a low dimensional vector space. Next, we analyze the point distribution pattern in the projected space, and measure its deviation from the complete spatial randomness. We evaluate our method via extensive simulation studies and find that our method can sensitively detect the difference of complexity and is robust to noise. Last, we apply the approach to a functional magnetic resonance imaging study and compare the complexity metrics of functional brain connectivity networks from 124 patients with schizophrenia and 103 healthy controls. The results show that the brain circuitry is more organized in healthy controls than schizophrenic patients for male subjects while the difference is minimal in female subjects. These findings are well aligned with the established sex difference in schizophrenia.
    Sponsors
    National Institutes of Health
    Keyword
    Brain network
    Entropy
    Graph embedding
    Point process
    Schizophrenia
    Weighted network
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/13748
    ae974a485f413a2113503eed53cd6c53
    10.3390/E22090925
    Scopus Count
    Collections
    UMB Open Access Articles

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.