• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Whole-genome analysis of Plasmodium falciparum isolates to understand allele-specific immunity to malaria

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Shah_umaryland_0373D_11143.pdf
    Size:
    3.605Mb
    Format:
    PDF
    Download
    Author
    Shah, Zalak cc
    Advisor
    Takala-Harrison, Shannon
    Date
    2020
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    After repeated P. falciparum infections, individuals in high-transmission areas acquire clinical immunity to malaria. However, the genes important in determining allele-specific immunity are not entirely known. Previous genome-wide approaches explored signatures of selection in the parasite genome to identify targets of clinical immunity; however, these approaches did not account for individual level allele-specific immunity. Here we take a whole-genome approach to identify genes that may be involved in acquisition of allele-specific immunity to malaria by analyzing parasite genomes collected from infected individuals in Malawi. However, obtaining whole genome sequence data from clinical samples is one of the major hurdles in the field of malaria genomics. In order to obtain whole genome sequence data from non-leukocyte depleted, low parasitemia samples, we optimized a selective-whole genome amplification (sWGA) by filtering the DNA prior to sWGA, to generate high coverage, whole genome sequence data from P. falciparum clinical samples with low amounts of parasite DNA. Using this optimized approach, we successfully performed whole-genome sequencing on 202 parasite isolates. We compared parasite genomes from individuals with varying levels of clinical immunity, defined using an individual’s proportion of symptomatic infections during the course of the study, hypothesizing that individuals with higher immunity become symptomatically ill due to infection with parasites with less common alleles. Using FST, we identified 161 SNPs to be genetically differentiated between the two groups and the median allele frequency was significantly lower at these sites in individuals in higher immunity group compared to the lower immunity group. We also examined pairs of parasites collected at different time points from the same individuals and identified 225 loci in 174 genes that vary within same individuals more often than expected by chance. Using both of these approaches, we identified 25 genes that encode likely targets of immunity, including a known antigen, CLAG8. Further analysis of clag8 global diversity showed evidence of immune selection in the C-terminal region, supporting the use of this approach in identification of new vaccine targets. Identifying and further analyzing these genomic regions will provide insights into mechanisms involved in allele-specific acquired immunity.
    Description
    2020
    Molecular Medicine
    University of Maryland, Baltimore
    Ph.D.
    Keyword
    Genetics
    Genetics, Population
    Genomics
    Malaria
    Molecular Epidemiology
    Plasmodium falciparum
    Vaccines
    Whole Genome Sequencing
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/13215
    Collections
    Theses and Dissertations School of Medicine
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.