• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Inducing DNA Repair Deficiencies in Triple Negative Breast Cancers Through Pharmacologic Stimulation of Innate Immune Signaling

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    McLaughlin_umaryland_0373D_111 ...
    Size:
    10.91Mb
    Format:
    PDF
    Download
    Thumbnail
    Name:
    McLaughlin_umaryland_0373D_153 ...
    Size:
    56.82Kb
    Format:
    Microsoft Excel 2007
    DownloadPDF Variant
    Thumbnail
    Name:
    McLaughlin_umaryland_0373D_153 ...
    Size:
    614.4Kb
    Format:
    Microsoft Excel 2007
    DownloadPDF Variant
    View more filesView fewer files
    Author
    McLaughlin, Lena cc
    Advisor
    Rassool, Feyruz V.
    Date
    2020
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Poly (ADP-ribose) polymerase inhibitors (PARPi) are FDA approved in a subset of patients with ovarian cancer or metastatic breast cancers who harbor BRCA gene mutations. These mutations generate homologous recombination deficiencies (HRD) and are the main predictor to PARPi sensitivity. Unfortunately, responses to therapy have not been durable and have failed for the majority of sporadic triple negative breast cancers (TNBC). We previously reported that DNA methyltransferase inhibitor (DNMTi) azacytidine (Aza) improves the efficacy of a new generation of PARPi, Talazoparib (Tal), through increased trapping of cytotoxic PARP-DNA complexes in both BRCA-mutant and -proficient TNBC. These trapped complexes lead to increased and persistent levels of lethal double strand breaks (DSBs), suggesting that DSB repair may also be impaired with this treatment. In the present study, we show that Aza/Tal treatment in BRCA-proficient TNBC cell lines significantly downregulates expression of HR and Fanconi Anemia (FA) genes, notably FANCD2, and decreases HR activity, thus generating HRD. DNMTi have also been established to induce a viral mimicry response which upregulate Type I interferon (IFN) signaling and production of inflammatory cytokines. We now link Aza/Tal facilitated HRD and induction of innate immune and inflammatory related genes, mediated in part through a STING dependent mechanism. Gene set enrichment analysis of RNA-Seq data derived from mono- and combination-treatments, reveal enrichment of innate immune and cytosolic DNA sensing pathways with significant increases of TNFα/NF-κB and IFNαβ gene sets. Overlap between HRD and immune related signaling was evaluated using the STRING database, which reveals a significant interaction specifically between FA pathway and TNFα/NF-κB and IFNαβ pathway genes. This inverse relationship was also validated in both METABRIC TNBC dataset and other TCGA data sets suggesting broad applicability of this observed transcriptional program independent of pharmacologic intervention. Additionally, Tal driven cytosolic DNA as well as an Aza augmentation in STING protein expression, emerges as the key node in Aza/Tal induced innate immune signaling to drive HRD. Induction of what we define as a pathogen mimicry response to drive HRD mechanism suggests that DNMTi-PARPi therapy strategies can expand the therapeutic scope of PARPi to encompass treatment of BRCA-proficient cancers.
    Description
    2020
    Molecular Medicine
    University of Maryland, Baltimore
    Ph.D.
    Keyword
    DNA methyltransferase inhibitors
    homologous recombination deficiencies
    innate immune signaling
    stimulator of interferon signaling
    Fanconi Anemia
    Poly(ADP-ribose) Polymerase Inhibitors
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/13071
    Collections
    Theses and Dissertations School of Medicine
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.