Show simple item record

dc.contributor.authorDoolin, M.T.
dc.contributor.authorMoriarty, R.A.
dc.contributor.authorStroka, K.M.
dc.date.accessioned2020-05-26T20:42:00Z
dc.date.available2020-05-26T20:42:00Z
dc.date.issued2020
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85084383031&doi=10.3389%2ffphys.2020.00365&partnerID=40&md5=3e00d14e3d841933441d04e9a5e43184
dc.identifier.urihttp://hdl.handle.net/10713/12840
dc.description.abstractMesenchymal stem cells (MSCs) and tumor cells have the unique capability to migrate out of their native environment and either home or metastasize, respectively, through extremely heterogeneous environments to a distant location. Once there, they can either aid in tissue regrowth or impart an immunomodulatory effect in the case of MSCs, or form secondary tumors in the case of tumor cells. During these journeys, cells experience physically confining forces that impinge on the cell body and the nucleus, ultimately causing a multitude of cellular changes. Most drastically, confining individual MSCs within hydrogels or confining monolayers of MSCs within agarose wells can sway MSC lineage commitment, while applying a confining compressive stress to metastatic tumor cells can increase their invasiveness. In this review, we seek to understand the signaling cascades that occur as cells sense confining forces and how that translates to behavioral changes, including elongated and multinucleated cell morphologies, novel migrational mechanisms, and altered gene expression, leading to a unique MSC secretome that could hold great promise for anti-inflammatory treatments. Through comparison of these altered behaviors, we aim to discern how MSCs alter their lineage selection, while tumor cells may become more aggressive and invasive. Synthesizing this information can be useful for employing MSCs for therapeutic approaches through systemic injections or tissue engineered grafts, and developing improved strategies for metastatic cancer therapies. Copyright 2020 Doolin, Moriarty and Stroka.en_US
dc.description.sponsorshipThis work was supported by a NIH F31HL145991 (to MD), a Burroughs Wellcome Career Award at the Scientific Interface, the University of Maryland Research and Scholarship Award, the Fischell Department of Bioengineering, and the University of Maryland.en_US
dc.description.urihttps://doi.org/10.3389/fphys.2020.00365en_US
dc.language.isoen_USen_US
dc.publisherFrontiers Media S.A.en_US
dc.relation.ispartofFrontiers in Physiology
dc.subjectcanceren_US
dc.subjectconfinementen_US
dc.subjectdifferentiationen_US
dc.subjectmigrationen_US
dc.subjectstem cellen_US
dc.titleMechanosensing of Mechanical Confinement by Mesenchymal-Like Cellsen_US
dc.typeArticleen_US
dc.identifier.doi10.3389/fphys.2020.00365


This item appears in the following Collection(s)

Show simple item record