Show simple item record

dc.contributor.authorBlack, L.W.
dc.contributor.authorYan, B.
dc.contributor.authorRay, K.
dc.date.accessioned2020-05-26T20:41:58Z
dc.date.available2020-05-26T20:41:58Z
dc.date.issued2020
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85084579795&doi=10.3390%2fv12050522&partnerID=40&md5=0c17e0491d25904f3cd842382d78beb1
dc.identifier.urihttp://hdl.handle.net/10713/12832
dc.description.abstractA "DNA crunching" linear motor mechanism that employs a grip-and-release transient spring like compression of B- to A-form DNA has been found in our previous studies. Our FRET measurements in vitro show a decrease in distance from TerL to portal during packaging; furthermore, there is a decrease in distance between closely positioned dye pairs in the Y-stem of translocating Y-DNA that conforms to B- and A- structure. In normal translocation into the prohead the TerL motor expels all B-form tightly binding YOYO-1 dye that cannot bind A-form. The TerL motor cannot package A-form dsRNA. Our work reported here shows that addition of helper B form DNA:DNA (D:D) 20mers allows increased packaging of heteroduplex A-form DNA:RNA 20mers (D:R), evidence for a B- to A-form spring motor pushing duplex nucleic acid. A-form DNA:RNA 25mers, 30mers, and 35mers alone are efficiently packaged into proheads by the TerL motor showing that a proposed hypothetical dehydration motor mechanism operating on duplex substrates does not provide the packaging motor force. Taken together with our previous studies showing TerL motor protein motion toward the portal during DNA packaging, our present studies of short D:D and D:R duplex nucleic acid substrates strongly supports our previous evidence that the protein motor pushes rather than pulls or dehydrates duplex substrates to provide the translocation into prohead packaging force. Copyright 2020 by the authors.en_US
dc.description.sponsorshipFunding: Research reported in this publication was supported by the National Institute of General Medical Sciences and National Institute of Allergy and Infectious Diseases at the National Institutes of Health under Award Numbers R01 GM118766 and R01 AI150447.en_US
dc.description.urihttps://doi.org/10.3390/v12050522en_US
dc.language.isoen_USen_US
dc.publisherMDPI AGen_US
dc.relation.ispartofViruses
dc.subjectDNA crunchingen_US
dc.subjectHeteroduplex A-form DNA:RNA packagingen_US
dc.subjectLinear motor mechanismen_US
dc.subjectT4 TerL proheaden_US
dc.titleThe T4 TerL prohead packaging motor does not drive DNA translocation by a proposed dehydration mechanismen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/v12050522
dc.identifier.pmid32397493


This item appears in the following Collection(s)

Show simple item record