The T4 TerL prohead packaging motor does not drive DNA translocation by a proposed dehydration mechanism
Abstract
A "DNA crunching" linear motor mechanism that employs a grip-and-release transient spring like compression of B- to A-form DNA has been found in our previous studies. Our FRET measurements in vitro show a decrease in distance from TerL to portal during packaging; furthermore, there is a decrease in distance between closely positioned dye pairs in the Y-stem of translocating Y-DNA that conforms to B- and A- structure. In normal translocation into the prohead the TerL motor expels all B-form tightly binding YOYO-1 dye that cannot bind A-form. The TerL motor cannot package A-form dsRNA. Our work reported here shows that addition of helper B form DNA:DNA (D:D) 20mers allows increased packaging of heteroduplex A-form DNA:RNA 20mers (D:R), evidence for a B- to A-form spring motor pushing duplex nucleic acid. A-form DNA:RNA 25mers, 30mers, and 35mers alone are efficiently packaged into proheads by the TerL motor showing that a proposed hypothetical dehydration motor mechanism operating on duplex substrates does not provide the packaging motor force. Taken together with our previous studies showing TerL motor protein motion toward the portal during DNA packaging, our present studies of short D:D and D:R duplex nucleic acid substrates strongly supports our previous evidence that the protein motor pushes rather than pulls or dehydrates duplex substrates to provide the translocation into prohead packaging force. Copyright 2020 by the authors.Sponsors
Funding: Research reported in this publication was supported by the National Institute of General Medical Sciences and National Institute of Allergy and Infectious Diseases at the National Institutes of Health under Award Numbers R01 GM118766 and R01 AI150447.Identifier to cite or link to this item
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084579795&doi=10.3390%2fv12050522&partnerID=40&md5=0c17e0491d25904f3cd842382d78beb1; http://hdl.handle.net/10713/12832ae974a485f413a2113503eed53cd6c53
10.3390/v12050522
Scopus Count
Collections
Related articles
- Compression of the DNA substrate by a viral packaging motor is supported by removal of intercalating dye during translocation.
- Authors: Dixit AB, Ray K, Black LW
- Issue date: 2012 Dec 11
- Dynamics of the T4 bacteriophage DNA packasome motor: endonuclease VII resolvase release of arrested Y-DNA substrates.
- Authors: Dixit A, Ray K, Lakowicz JR, Black LW
- Issue date: 2011 May 27
- Old, new, and widely true: The bacteriophage T4 DNA packaging mechanism.
- Authors: Black LW
- Issue date: 2015 May
- The DNA translocating ATPase of bacteriophage T4 packaging motor.
- Authors: Kondabagil KR, Zhang Z, Rao VB
- Issue date: 2006 Nov 3
- The C-terminal domain of the bacteriophage T4 terminase docks on the prohead portal clip region during DNA packaging.
- Authors: Dixit AB, Ray K, Thomas JA, Black LW
- Issue date: 2013 Nov