Re-annotation of the Theileria parva genome refines 53% of the proteome and uncovers essential components of N-glycosylation, a conserved pathway in many organisms
Date
2020Journal
BMC genomicsPublisher
Springer NatureType
Article
Metadata
Show full item recordAbstract
BACKGROUND: The apicomplexan parasite Theileria parva causes a livestock disease called East coast fever (ECF), with millions of animals at risk in sub-Saharan East and Southern Africa, the geographic distribution of T. parva. Over a million bovines die each year of ECF, with a tremendous economic burden to pastoralists in endemic countries. Comprehensive, accurate parasite genome annotation can facilitate the discovery of novel chemotherapeutic targets for disease treatment, as well as elucidate the biology of the parasite. However, genome annotation remains a significant challenge because of limitations in the quality and quantity of the data being used to inform the location and function of protein-coding genes and, when RNA data are used, the underlying biological complexity of the processes involved in gene expression. Here, we apply our recently published RNAseq dataset derived from the schizont life-cycle stage of T. parva to update structural and functional gene annotations across the entire nuclear genome. RESULTS: The re-annotation effort lead to evidence-supported updates in over half of all protein-coding sequence (CDS) predictions, including exon changes, gene merges and gene splitting, an increase in average CDS length of approximately 50 base pairs, and the identification of 128 new genes. Among the new genes identified were those involved in N-glycosylation, a process previously thought not to exist in this organism and a potentially new chemotherapeutic target pathway for treating ECF. Alternatively-spliced genes were identified, and antisense and multi-gene family transcription were extensively characterized. CONCLUSIONS: The process of re-annotation led to novel insights into the organization and expression profiles of protein-coding sequences in this parasite, and uncovered a minimal N-glycosylation pathway that changes our current understanding of the evolution of this post-translational modification in apicomplexan parasites.Identifier to cite or link to this item
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083042210&doi=10.1186%2fs12864-020-6683-0&partnerID=40&md5=ce2f98641db61c1c7bc02c0d299747cb; http://hdl.handle.net/10713/12609ae974a485f413a2113503eed53cd6c53
10.1186/s12864-020-6683-0
Scopus Count
Collections
Related articles
- Transcriptomics reveal potential vaccine antigens and a drastic increase of upregulated genes during Theileria parva development from arthropod to bovine infective stages.
- Authors: Tonui T, Corredor-Moreno P, Kanduma E, Njuguna J, Njahira MN, Nyanjom SG, Silva JC, Djikeng A, Pelle R
- Issue date: 2018
- Cis regulatory motifs and antisense transcriptional control in the apicomplexan Theileria parva.
- Authors: Tretina K, Pelle R, Silva JC
- Issue date: 2016 Feb 20
- Properties of non-coding DNA and identification of putative cis-regulatory elements in Theileria parva.
- Authors: Guo X, Silva JC
- Issue date: 2008 Dec 3
- Analysis of p67 allelic sequences reveals a subtype of allele type 1 unique to buffalo-derived Theileria parva parasites from southern Africa.
- Authors: Mukolwe LD, Odongo DO, Byaruhanga C, Snyman LP, Sibeko-Matjila KP
- Issue date: 2020
- Four p67 alleles identified in South African Theileria parva field samples.
- Authors: Sibeko KP, Geysen D, Oosthuizen MC, Matthee CA, Troskie M, Potgieter FT, Coetzer JA, Collins NE
- Issue date: 2010 Feb 10