• Login
    View Item 
    •   UMB Digital Archive
    • UMB Open Access Articles
    • UMB Open Access Articles
    • View Item
    •   UMB Digital Archive
    • UMB Open Access Articles
    • UMB Open Access Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    The Role of Candida albicans Secreted Polysaccharides in Augmenting Streptococcus mutans Adherence and Mixed Biofilm Formation: In vitro and in vivo Studies

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Author
    Khoury, Z.H.
    Vila, T.
    Puthran, T.R.
    Sultan, A.S.
    Montelongo-Jauregui, D.
    Melo, M.A.S.
    Jabra-Rizk, M.A.
    Date
    2020
    Journal
    Frontiers in Microbiology
    Publisher
    Frontiers Media S.A.
    Type
    Article
    
    Metadata
    Show full item record
    See at
    https://doi.org/10.3389/fmicb.2020.00307
    Abstract
    The oral cavity is a complex environment harboring diverse microbial species that often co-exist within biofilms formed on oral surfaces. Within a biofilm, inter-species interactions can be synergistic in that the presence of one organism generates a niche for another enhancing colonization. Among these species are the opportunistic fungal pathogen Candida albicans and the bacterial species Streptococcus mutans, the etiologic agents of oral candidiasis and dental caries, respectively. Recent studies have reported enhanced prevalence of C. albicans in children with caries indicating potential clinical implications for this fungal-bacterial interaction. In this study, we aimed to specifically elucidate the role of C. albicans-derived polysaccharide biofilm matrix components in augmenting S. mutans colonization and mixed biofilm formation. Comparative evaluations of single and mixed species biofilms demonstrated significantly enhanced S. mutans retention in mixed biofilms with C. albicans. Further, S. mutans single species biofilms were enhanced upon exogenous supplementation with purified matrix material derived from C. albicans biofilms. Similarly, growth in C. albicans cell-free spent biofilm culture media enhanced S. mutans single species biofilm formation, however, the observed increase in S. mutans biofilms was significantly affected upon enzymatic digestion of polysaccharides in spent media, identifying C. albicans secreted polysaccharides as a key factor in mediating mixed biofilm formation. The enhanced S. mutans biofilms mediated by the various C. albicans effectors was also demonstrated using confocal laser scanning microscopy. Importantly, a clinically relevant mouse model of oral co-infection was adapted to demonstrate the C. albicans-mediated enhanced S. mutans colonization in a host. Analyses of harvested tissue and scanning electron microscopy demonstrated significantly higher S. mutans retention on teeth and tongues of co-infected mice compared to mice infected only with S. mutans. Collectively, the findings from this study strongly indicate that the secretion of polysacharides from C. albicans in the oral environment may impact the development of S. mutans biofilms, ultimately increasing dental caries and, therefore, Candida oral colonization should be considered as a factor in evaluating the risk of caries. Copyright 2020 The Authors.
    Sponsors
    This work was funded by the National Institute of Health under award number R21DE028693 (NIDCR) to MJ-R.
    Keyword
    Candida albicans
    dental caries
    fungal-bacteria interactions
    matrix
    mixed-biofilms
    polysaccharide
    Streptococcus mutans
    Identifier to cite or link to this item
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082554668&doi=10.3389%2ffmicb.2020.00307&partnerID=40&md5=07a2f51940d16bb18c2b6d09e915ca9e; http://hdl.handle.net/10713/12572
    ae974a485f413a2113503eed53cd6c53
    10.3389/fmicb.2020.00307
    Scopus Count
    Collections
    UMB Open Access Articles

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.