• Functional analysis of SARS-CoV-2 proteins in Drosophila identifies Orf6-induced pathogenic effects with Selinexor as an effective treatment

      Zhu, J.-Y.; Lee, J.-G.; van de Leemput, J.; Kane, M.A.; Han, Z. (Springer Nature, 2021-03-25)
      Background: SARS-CoV-2 causes COVID-19 with a widely diverse disease profile that affects many different tissues. The mechanisms underlying its pathogenicity in host organisms remain unclear. Animal models for studying the pathogenicity of SARS-CoV-2 proteins are lacking. Methods: Using bioinformatic analysis, we found that 90% of the virus-host interactions involve human proteins conserved in Drosophila. Therefore, we generated a series of transgenic fly lines for individual SARS-CoV-2 genes, and used the Gal4-UAS system to express these viral genes in Drosophila to study their pathogenicity. Results: We found that the ubiquitous expression of Orf6, Nsp6 or Orf7a in Drosophila led to reduced viability and tissue defects, including reduced trachea branching as well as muscle deficits resulting in a "held-up" wing phenotype and poor climbing ability. Furthermore, muscles in these flies showed dramatically reduced mitochondria. Since Orf6 was found to interact with nucleopore proteins XPO1, we tested Selinexor, a drug that inhibits XPO1, and found that it could attenuate the Orf6-induced lethality and tissue-specific phenotypes observed in flies. Conclusions: Our study established Drosophila as a model for studying the function of SARS-CoV2 genes, identified Orf6 as a highly pathogenic protein in various tissues, and demonstrated the potential of Selinexor for inhibiting Orf6 toxicity using an in vivo animal model system. Copyright 2021, The Author(s).