• Incidence of symptomatic venous thromboembolism following hospitalization for coronavirus disease 2019: Prospective results from a multi-center study.

      Rashidi, Farid; Barco, Stefano; Kamangar, Farin; Heresi, Gustavo A; Emadi, Ashkan; Kaymaz, Cihangir; Jansa, Pavel; Reis, Abilio; Rashidi, Arash; Taghizadieh, Ali; et al. (Elsevier Ltd., 2021-01)
      Background: Thrombosis and pulmonary embolism appear to be major causes of mortality in hospitalized coronavirus disease 2019 (COVID-19) patients. However, few studies have focused on the incidence of venous thromboembolism (VTE) after hospitalization for COVID-19. Methods: In this multi-center study, we followed 1529 COVID-19 patients for at least 45 days after hospital discharge, who underwent routine telephone follow-up. In case of signs or symptoms of pulmonary embolism (PE) or deep vein thrombosis (DVT), they were invited for an in-hospital visit with a pulmonologist. The primary outcome was symptomatic VTE within 45 days of hospital discharge. Results: Of 1529 COVID-19 patients discharged from hospital, a total of 228 (14.9%) reported potential signs or symptoms of PE or DVT and were seen for an in-hospital visit. Of these, 13 and 12 received Doppler ultrasounds or pulmonary CT angiography, respectively, of whom only one patient was diagnosed with symptomatic PE. Of 51 (3.3%) patients who died after discharge, two deaths were attributed to VTE corresponding to a 45-day cumulative rate of symptomatic VTE of 0.2% (95%CI 0.1%–0.6%; n = 3). There was no evidence of acute respiratory distress syndrome (ARDS) in these patients. Other deaths after hospital discharge included myocardial infarction (n = 13), heart failure (n = 9), and stroke (n = 9). Conclusions: We did not observe a high rate of symptomatic VTE in COVID-19 patients after hospital discharge. Routine extended thromboprophylaxis after hospitalization for COVID-19 may not have a net clinical benefit. Randomized trials may be warranted.
    • Projecting hospital utilization during the COVID-19 outbreaks in the United States

      Moghadas, S.M.; Shoukat, A.; Fitzpatrick, M.C. (National Academy of Sciences, 2020)
      In the wake of community coronavirus disease 2019 (COVID-19) transmission in the United States, there is a growing public health concern regarding the adequacy of resources to treat infected cases. Hospital beds, intensive care units (ICUs), and ventilators are vital for the treatment of patients with severe illness. To project the timing of the outbreak peak and the number of ICU beds required at peak, we simulated a COVID-19 outbreak parameterized with the US population demographics. In scenario analyses, we varied the delay from symptom onset to self-isolation, the proportion of symptomatic individuals practicing self-isolation, and the basic reproduction number R0. Without self-isolation, when R0 = 2.5, treatment of critically ill individuals at the outbreak peak would require 3.8 times more ICU beds than exist in the United States. Self-isolation by 20% of cases 24 h after symptom onset would delay and flatten the outbreak trajectory, reducing the number of ICU beds needed at the peak by 48.4% (interquartile range 46.4-50.3%), although still exceeding existing capacity. When R0 = 2, twice as many ICU beds would be required at the peak of outbreak in the absence of self-isolation. In this scenario, the proportional impact of self-isolation within 24 h on reducing the peak number of ICU beds is substantially higher at 73.5% (interquartile range 71.4-75.3%). Our estimates underscore the inadequacy of critical care capacity to handle the burgeoning outbreak. Policies that encourage self-isolation, such as paid sick leave, may delay the epidemic peak, giving a window of time that could facilitate emergency mobilization to expand hospital capacity.