• Drosophila, a powerful model to study virus-host interactions and pathogenicity in the fight against SARS-CoV-2

      van de Leemput, Joyce; Han, Zhe (Springer Nature, 2021-06-13)
      The COVID-19 pandemic is having a tremendous impact on humanity. Although COVID-19 vaccines are showing promising results, they are not 100% effective and resistant mutant SARS-CoV-2 strains are on the rise. To successfully fight against SARS-CoV-2 and prepare for future coronavirus outbreaks, it is essential to understand SARS-CoV-2 protein functions, their host interactions, and how these processes convey pathogenicity at host tissue, organ and systemic levels. In vitro models are valuable but lack the physiological context of a whole organism. Current animal models for SARS-CoV-2 research are exclusively mammals, with the intrinsic limitations of long reproduction times, few progeny, ethical concerns and high maintenance costs. These limitations make them unsuitable for rapid functional investigations of virus proteins as well as genetic and pharmacological screens. Remarkably, 90% of the SARS-CoV-2 virus-host interacting proteins are conserved between Drosophila and humans. As a well-established model system for studying human diseases, the fruit fly offers a highly complementary alternative to current mammalian models for SARS-CoV-2 research, from investigating virus protein function to developing targeted drugs. Herein, we review Drosophila's track record in studying human viruses and discuss the advantages and limitations of using fruit flies for SARS-CoV-2 research. We also review studies that already used Drosophila to investigate SARS-CoV-2 protein pathogenicity and their damaging effects in COVID-19 relevant tissues, as well as studies in which the fly was used as an efficient whole animal drug testing platform for targeted therapeutics against SARS-CoV-2 proteins or their host interacting pathways.
    • A review on sars-cov-2 virology, pathophysiology, animal models, and anti-viral interventions

      Neerukonda, S.N.; Katneni, U. (MDPI AG, 2020)
      Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of CoV disease 2019 (COVID-19) is a highly pathogenic and transmissible CoV that is presently plaguing the global human population and economy. No proven effective antiviral therapy or vaccine currently exists, and supportive care remains to be the cornerstone treatment. Through previous lessons learned from SARS-CoV-1 and MERS-CoV studies, scientific groups worldwide have rapidly expanded the knowledge pertaining to SARS-CoV-2 virology that includes in vitro and in vivo models for testing of antiviral therapies and randomized clinical trials. In the present narrative, we review SARS-CoV-2 virology, clinical features, pathophysiology, and animal models with a specific focus on the antiviral and adjunctive therapies currently being tested or that require testing in animal models and randomized clinical trials. Copyright 2020 by the authors.