• A dedicated veno-venous extracorporeal membrane oxygenation unit during a respiratory pandemic: Lessons learned from covid-19 part I: System planning and care teams

      Dave, Sagar; Shah, Aakash; Galvagno, Samuel; George, Kristen; Menne, Ashley R.; Haase, Daniel J.; McCormick, Brian; Rector, Raymond; Dahi, Siamak; Madathil, Ronson J.; et al. (MDPI AG, 2021-04-02)
      Background: The most critically ill patients with coronavirus disease 2019 (COVID-19) may require advanced support modalities, such as veno-venous extracorporeal membrane oxygenation (VV-ECMO). A systematic, methodical approach to a respiratory pandemic on a state and institutional level is critical. Methods: We conducted retrospective review of our institutional response to the COVID-19 pandemic, focusing on the creation of a dedicated airlock biocontainment unit (BCU) to treat patients with refractory COVID-19 acute respiratory distress syndrome (CARDS). Data were collected through conversations with staff on varying levels in the BCU, those leading the effort to make the BCU and hospital incident command system, email communications regarding logistic changes being implemented, and a review of COVID-19 patient census at our institution from March through June 2020. Results: Over 2100 patients were successfully admitted to system hospitals; 29% of these patients required critical care. The response to this respiratory pandemic augmented intensive care physician staffing, created a 70-member nursing team, and increased the extracorporeal membrane oxygenation (ECMO) capability by nearly 200%. During this time period, 40 COVID-19 patients on VV-ECMO were managed in the BCU. Challenges in an airlock unit included communication, scarcity of resources, double-bunking, and maintaining routine care. Conclusions: Preparing for a surge of critically ill patients during a pandemic can be a daunting task. The implementation of a coordinated, system-level approach can help with the allocation of resources as needed. Focusing on established strengths of hospitals within the system can guide triage based on individual patient needs. The management of ECMO patients is still a specialty care, and a systematic and hospital based approach requiring an ECMO team composed of multiple experienced individuals is paramount during a respiratory viral pandemic. © 2021 by the authors.
    • A Dedicated Veno-Venous Extracorporeal Membrane Oxygenation Unit during a Respiratory Pandemic: Lessons Learned from COVID-19 Part II: Clinical Management

      Shah, Aakash; Dave, Sagar; Galvagno, Samuel; George, Kristen; Menne, Ashley R; Haase, Daniel J; McCormick, Brian; Rector, Raymond; Dahi, Siamak; Madathil, Ronson J; et al. (MDPI AG, 2021-04-21)
      (1) Background: COVID-19 acute respiratory distress syndrome (CARDS) has several distinctions from traditional acute respiratory distress syndrome (ARDS); however, patients with refractory respiratory failure may still benefit from veno-venous extracorporeal membrane oxygenation (VV-ECMO) support. We report our challenges caring for CARDS patients on VV-ECMO and alterations to traditional management strategies. (2) Methods: We conducted a retrospective review of our institutional strategies for managing patients with COVID-19 who required VV-ECMO in a dedicated airlock biocontainment unit (BCU), from March to June 2020. The data collected included the time course of admission, VV-ECMO run, ventilator length, hospital length of stay, and major events related to bleeding, such as pneumothorax and tracheostomy. The dispensation of sedation agents and trial therapies were obtained from institutional pharmacy tracking. A descriptive statistical analysis was performed. (3) Results: Forty COVID-19 patients on VV-ECMO were managed in the BCU during this period, from which 21 survived to discharge and 19 died. The criteria for ECMO initiation was altered for age, body mass index, and neurologic status/cardiac arrest. All cannulations were performed with a bedside ultrasound-guided percutaneous technique. Ventilator and ECMO management were routed in an ultra-lung protective approach, though varied based on clinical setting and provider experience. There was a high incidence of pneumothorax (n = 19). Thirty patients had bedside percutaneous tracheostomy, with more procedural-related bleeding complications than expected. A higher use of sedation was noted. The timing of decannulation was also altered, given the system constraints. A variety of trial therapies were utilized, and their effectiveness is yet to be determined. (4) Conclusions: Even in a high-volume ECMO center, there are challenges in caring for an expanded capacity of patients during a viral respiratory pandemic. Though institutional resources and expertise may vary, it is paramount to proceed with insightful planning, the recognition of challenges, and the dynamic application of lessons learned when facing a surge of critically ill patients.
    • Extracorporeal Membrane Oxygenation for COVID-19

      Sanford, Zachary; Madathil, Ronson J.; Deatrick, Kristopher B.; Tabatabai, Ali; Menaker, Jay; Galvagno, Samuel M.; Mazzeffi, Michael A.; Rabin, Joseph; Ghoreishi, Mehrdad; Rector, Raymond; et al. (SAGE Publications, 2020-07-21)
    • Kinetics of SARS-CoV-2 antibody responses pre-COVID-19 and post-COVID-19 convalescent plasma transfusion in patients with severe respiratory failure: an observational case-control study

      Klein, Matthew N; Wang, Elizabeth Wenqian; Zimand, Paul; Beauchamp, Heather; Donis, Caitlin; Ward, Matthew D; Martinez-Hernandez, Aidaelis; Tabatabai, Ali; Baddley, John W; Bloch, Evan M; et al. (BMJ Publishing Group, 2021-04-23)
      Aims: While the SARS-CoV-2 pandemic may be contained through vaccination, transfusion of convalescent plasma (CCP) from individuals who recovered from COVID-19 (CCP) is considered an alternative treatment. We investigate if CCP transfusion in patients with severe respiratory failure increases plasma titres of SARS-CoV-2 antibodies and improves clinical outcomes. Methods: Patients with COVID-19 (n=34) were consented for CCP transfusion and serial blood draws pretransfusion and post-transfusion. Plasma SARS-CoV-2 antireceptor binding domain (RBD) IgG and IgM titres were measured by ELISA serially, and compared with serial plasma titre levels from control patients (n=68). The primary outcome was survival at 30 days, and secondary outcomes were length of ventilator and/or extracorporeal membrane oxygenation (ECMO) support, length of stay (LOS) in the hospital and in the intensive care unit (ICU). Outcomes were compared with matched control patients (n=34). Kinetics of antibodies and clinical outcomes were compared using LOess regression and ORs, respectively. Results: Prior to CCP transfusion, 74% of patients were anti-RBD seropositive for IgG (median 1:3200), and 81% were anti-RBD IgM seropositive (median 1:320), while 16% were seronegative. The kinetics of antibody titres in CCP recipients were similar to controls. CCP recipients presented with similar survival, duration on ventilatory and/or ECMO support, as well as ICU and hospital LOS compared with controls. Conclusions: CCP transfusion did not increase the kinetics of SARS-CoV2 antibodies and did not result in improved clinical outcomes in patients with COVID-19 with severe respiratory failure, suggesting that CCP may not be indicated in this category of patients.
    • Mortality Risk Assessment in COVID-19 Venovenous Extracorporeal Membrane Oxygenation

      Tabatabai, Ali; Ghneim, Mira H; Kaczorowski, David J; Shah, Aakash; Dave, Sagar; Haase, Daniel J; Vesselinov, Roumen; Deatrick, Kristopher B; Rabin, Joseph; Rabinowitz, Ronald P; et al. (Elsevier Inc., 2021-01-21)
      Background: A life-threatening complication of coronavirus disease 2019 (COVID-19) is acute respiratory distress syndrome (ARDS) refractory to conventional management. Venovenous (VV) extracorporeal membrane oxygenation (ECMO) (VV-ECMO) is used to support patients with ARDS in whom conventional management fails. Scoring systems to predict mortality in VV-ECMO remain unvalidated in COVID-19 ARDS. This report describes a large single-center experience with VV-ECMO in COVID-19 and assesses the utility of standard risk calculators. Methods: A retrospective review of a prospective database of all patients with COVID-19 who underwent VV-ECMO cannulation between March 15 and June 27, 2020 at a single academic center was performed. Demographic, clinical, and ECMO characteristics were collected. The primary outcome was in-hospital mortality; survivor and nonsurvivor cohorts were compared by using univariate and bivariate analyses. Results: Forty patients who had COVID-19 and underwent ECMO were identified. Of the 33 patients (82.5%) in whom ECMO had been discontinued at the time of analysis, 18 patients (54.5%) survived to hospital discharge, and 15 (45.5%) died during ECMO. Nonsurvivors presented with a statistically significant higher Prediction of Survival on ECMO Therapy (PRESET)-Score (mean ± SD, 8.33 ± 0.8 vs 6.17 ± 1.8; P = .001). The PRESET score demonstrated accurate mortality prediction. All patients with a PRESET-Score of 6 or lowers survived, and a score of 7 or higher was associated with a dramatic increase in mortality. Conclusions: These results suggest that favorable outcomes are possible in patients with COVID-19 who undergo ECMO at high-volume centers. This study demonstrated an association between the PRESET-Score and survival in patients with COVID-19 who underwent VV-ECMO. Standard risk calculators may aid in appropriate selection of patients with COVID-19 ARDS for ECMO. © 2021