• Hyperspectral Mapping for the Detection of SARS-CoV-2 Using Nanomolecular Probes with Yoctomole Sensitivity

      Alafeef, Maha; Moitra, Parikshit; Dighe, Ketan; Pan, Dipanjan (American Chemical Society, 2021-07-19)
      Efficient monitoring of SARS-CoV-2 outbreak requires the use of a sensitive and rapid diagnostic test. Although SARS-CoV-2 RNA can be detected by RT-qPCR, the molecular-level quantification of the viral load is still challenging, time-consuming, and labor-intensive. Here, we report an ultrasensitive hyperspectral sensor (HyperSENSE) based on hafnium nanoparticles (HfNPs) for specific detection of COVID-19 causative virus, SARS-CoV-2. Density functional theoretical calculations reveal that HfNPs exhibit higher changes in their absorption wavelength and light scattering when bound to their target SARS-CoV-2 RNA sequence relative to the gold nanoparticles. The assay has a turnaround time of a few seconds and has a limit of detection in the yoctomolar range, which is 1 000 000-fold times higher than the currently available COVID-19 tests. We demonstrated in ∼100 COVID-19 clinical samples that the assay is highly sensitive and has a specificity of 100%. We also show that HyperSENSE can rapidly detect other viruses such as influenza A H1N1. The outstanding sensitivity indicates the potential of the current biosensor in detecting the prevailing presymptomatic and asymptomatic COVID-19 cases. Thus, integrating hyperspectral imaging with nanomaterials establishes a diagnostic platform for ultrasensitive detection of COVID-19 that can potentially be applied to any emerging infectious pathogen.
    • Rapid, Ultrasensitive, and Quantitative Detection of SARS-CoV-2 Using Antisense Oligonucleotides Directed Electrochemical Biosensor Chip.

      Alafeef, Maha; Dighe, Ketan; Moitra, Parikshit; Pan, Dipanjan (American Chemical Society, 2020-10-20)
      A large-scale diagnosis of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) is essential to downregulate its spread within as well as across communities and mitigate the current outbreak of the pandemic novel coronavirus disease 2019 (COVID-19). Herein, we report the development of a rapid (less than 5 min), low-cost, easy-to-implement, and quantitative paper-based electrochemical sensor chip to enable the digital detection of SARS-CoV-2 genetic material. The biosensor uses gold nanoparticles (AuNPs), capped with highly specific antisense oligonucleotides (ssDNA) targeting viral nucleocapsid phosphoprotein (N-gene). The sensing probes are immobilized on a paper-based electrochemical platform to yield a nucleic-acid-testing device with a readout that can be recorded with a simple hand-held reader. The biosensor chip has been tested using samples collected from Vero cells infected with SARS-CoV-2 virus and clinical samples. The sensor provides a significant improvement in output signal only in the presence of its target-SARS-CoV-2 RNA-within less than 5 min of incubation time, with a sensitivity of 231 (copies μL-1)-1 and limit of detection of 6.9 copies/μL without the need for any further amplification. The sensor chip performance has been tested using clinical samples from 22 COVID-19 positive patients and 26 healthy asymptomatic subjects confirmed using the FDA-approved RT-PCR COVID-19 diagnostic kit. The sensor successfully distinguishes the positive COVID-19 samples from the negative ones with almost 100% accuracy, sensitivity, and specificity and exhibits an insignificant change in output signal for the samples lacking a SARS-CoV-2 viral target segment (e.g., SARS-CoV, MERS-CoV, or negative COVID-19 samples collected from healthy subjects). The feasibility of the sensor even during the genomic mutation of the virus is also ensured from the design of the ssDNA-conjugated AuNPs that simultaneously target two separate regions of the same SARS-CoV-2 N-gene.
    • RNA-extraction-free nano-amplified colorimetric test for point-of-care clinical diagnosis of COVID-19

      Alafeef, Maha; Moitra, Parikshit; Dighe, Ketan; Pan, Dipanjan (Springer Nature, 2021-04-30)
      The global pandemic of coronavirus disease 2019 (COVID-19) highlights the shortcomings of the current testing paradigm for viral disease diagnostics. Here, we report a stepwise protocol for an RNA-extraction-free nano-amplified colorimetric test for rapid and naked-eye molecular diagnosis of COVID-19. The test employs a unique dual-prong approach that integrates nucleic acid (NA) amplification and plasmonic sensing for point-of-care detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with a sample-to-assay response time of <1 h. The RNA-extraction-free nano-amplified colorimetric test utilizes plasmonic gold nanoparticles capped with antisense oligonucleotides (ASOs) as a colorimetric reporter to detect the amplified nucleic acid from the COVID-19 causative virus, SARS-CoV-2. The ASOs are specific for the SARS-CoV-2 N-gene, and binding of the ASOs to their target sequence results in the aggregation of the plasmonic gold nanoparticles. This highly specific agglomeration step leads to a change in the plasmonic response of the nanoparticles. Furthermore, when tested using clinical samples, the accuracy, sensitivity and specificity of the test were found to be >98.4%, >96.6% and 100%, respectively, with a detection limit of 10 copies/μL. The test can easily be adapted to diagnose other viral infections with a simple modification of the ASOs and primer sequences. It also provides a low-cost, rapid approach requiring minimal instrumentation that can be used as a screening tool for the diagnosis of COVID-19 at point-of-care settings in resource-poor situations. The colorimetric readout of the test can even be monitored using a handheld optical reader to obtain a quantitative response. Therefore, we anticipate that this protocol will be widely useful for the development of biosensors for the molecular diagnostics of COVID-19 and other infectious diseases. © 2021, The Author(s)