• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Identification and characterization of PDZ proteins that differentially coordinate basolateral membrane expression of a CCD inwardly rectifying potassium channel, Kir 2.3

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Find Full text
    Author
    Olsen, Olav Richard
    Advisor
    Welling, Paul A.
    Date
    2001
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    The polarized expression of disparate transport proteins on two distinct membrane domains is an essential prerequisite for the vectorial transport of water, solutes and ions across epithelia. The renal cortical collecting duct, the site of potassium secretion in the kidney, provides a salient example. In these cells, the asymmetric expression of weakly inward rectifying potassium channels on the apical membrane and strongly rectifying potassium channel on the basolateral membrane increases the fidelity of the secretory process, ensuring that potassium preferentially exits the cell across the apical membrane into the lumen of the tubule in concert with the demands of potassium homeostasis (Giebisch, 1998). The identification of a plausible gene candidate, Kir 2.3, for the basolateral potassium channel (Welling, 1997) provided the impetus to elucidate the basis for polarized membrane targeting of a native channel (Le Maout et al., 1997). The basolateral membrane sorting determinant of Kir 2.3 is comprised of a unique arrangement of trafficking motifs, containing juxtaposing biosynthetic targeting and PDZ-based signals (Le Maout et al., 2001). In the present study, the mechanism by which the PDZ interactions coordinate the basolateral membrane expression of Kir 2.3 was elucidated. In contrast to apical missorting of Kir 2.3 channels lacking the basolateral sorting domain (Le Maout et al., 2001), deletion of the downstream PDZ binding domain causes channels to accumulate in an endosomal compartment. To identify PDZ proteins that functionally interact with the Kir 2.3 sorting signal, the yeast two-hybrid interaction system was employed. Two PDZ proteins that differentially regulate sorting of Kir 2.3 were identified. Consistent with a retention mechanism, one of these PDZ proteins, hLin-7b, couples Kir 2.3 to a multimeric scaffolding complex at the basolateral membrane in epithelial cells. The second PDZ protein, MOPP, has unique structural properties, allowing it to function as a natural dominant-negative PDZ protein. MOPP competes with hLin-7b for interaction with Kir 2.3, thereby regulating basolateral membrane expression of the channel. In conclusion, we propose that basolateral membrane expression of Kir 2.3 is coordinated by the sequential use of different sorting machinery in a multi-step basolateral sorting program.
    Description
    University of Maryland, Baltimore. Physiology. Ph.D. 2001
    Keyword
    Biology, Cell
    Biology, Animal Physiology
    Kidneys
    PDZ Domains
    Potassium Channels
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/1222
    Collections
    Theses and Dissertations School of Medicine
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.