• Login
    View Item 
    •   UMB Digital Archive
    • UMB Open Access Articles
    • UMB Open Access Articles
    • View Item
    •   UMB Digital Archive
    • UMB Open Access Articles
    • UMB Open Access Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Zebrafish as a Model System for the Study of Severe CaV2.1 (α1A) Channelopathies

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Author
    Tyagi, S.
    Ribera, A.B.
    Bannister, R.A.
    Date
    2020
    Journal
    Frontiers in Molecular Neuroscience
    Publisher
    Frontiers Media S.A.
    Type
    Article
    
    Metadata
    Show full item record
    See at
    https://doi.org/10.3389/fnmol.2019.00329
    Abstract
    The P/Q-type CaV2.1 channel regulates neurotransmitter release at neuromuscular junctions (NMJ) and many central synapses. CACNA1A encodes the pore-containing α1A subunit of CaV2.1 channels. In humans, de novo CACNA1A mutations result in a wide spectrum of neurological, neuromuscular, and movement disorders, such as familial hemiplegic migraine type 1 (FHM1), episodic ataxia type 2 (EA2), as well as a more recently discovered class of more severe disorders, which are characterized by ataxia, hypotonia, cerebellar atrophy, and cognitive/developmental delay. Heterologous expression of CaV2.1 channels has allowed for an understanding of the consequences of CACNA1A missense mutations on channel function. In contrast, a mechanistic understanding of how specific CACNA1A mutations lead in vivo to the resultant phenotypes is lacking. In this review, we present the zebrafish as a model to both study in vivo mechanisms of CACNA1A mutations that result in synaptic and behavioral defects and to screen for effective drug therapies to combat these and other CaV2.1 channelopathies. Copyright 2020 Tyagi, Ribera and Bannister.
    Sponsors
    This work was supported by National Institute of Neurological Disorders and Stroke/National Institute of Health (NIH) grants NS103777 and NS086839 to RB and AR, respectively. ST was supported by the Boettcher Foundation.
    Keyword
    CaV2.1
    channelopathy
    episodic ataxia type 2
    familial hemiplegic migraine type 1
    P/Q-type
    vertebrate models
    zebrafish
    α1A
    Identifier to cite or link to this item
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079755669&doi=10.3389%2ffnmol.2019.00329&partnerID=40&md5=de5a7db47ffdffe5aa086d7f376f39e5; http://hdl.handle.net/10713/12160
    ae974a485f413a2113503eed53cd6c53
    10.3389/fnmol.2019.00329
    Scopus Count
    Collections
    UMB Open Access Articles

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.