• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Interactions between members of the alpha-K family of scorpion toxins and voltage-gated potassium channels

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Find Full text
    Author
    Ellis, Karen Catherine
    Advisor
    Weber, David J., Ph.D.
    Date
    2002
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    The interaction of the alpha-K toxins with their target K+ channels has been the subject of intense study to help identify elements of their sequence and structure that are responsible for their varied selectivity and specficity. The Pandinotoxins, PiTX-Kalpha and PiTX-Kbeta, differ from each other by one residue (P10E). Yet, the affinity of PiTX-Kbeta for voltage-gated, rapidly inactivating K+ channels in dorsal root ganglia (DRG) neurons is 800-fold lower than that of PiTX-Kalpha. (Kalpha-IC 50 = 8.0 nM versus Kbeta-IC50 = 6500 nM). The 3D structure of PiTX-Kbeta was determined by NMR spectroscopy and compared to that of PiTX-Kalpha to understand this difference. This comparison shows that structural differences between the two toxins occur at a residue that is critical for blocking K+ channels (K27) as well as at the site of the natural mutation (P10E). In PiTX-Kbeta, the negatively charged carboxylate oxygen of E10 can approach the positive charge of K27 and presumably reduces the net positive charge in this region of the toxin. This is likely the reason why PiTX-Kbeta binds K+ channels from DRG neurons with a much lower affinity than does PiTX-Kalpha. Another member of the alpha-K family from the scorpion Tityus serrulatus (TsTX-Kalpha) blocks native squid K+ channels and their cloned counterpart, sqKv1A (nativeKd ≈ 20 nM; sqKv1AKd ≈ 10 nM) in a pH dependent manner (pK = 6.6). To further investigate the TsTX-Kalpha-sqKv1A interaction, the 3D structure of TsTX-Kalpha was determined by NMR spectroscopy, and a model of the TsTX-Kalpha-sqKv1A complex was generated. As found for other alpha-K toxins such as charybdotoxin (CTX), site-directed mutagenesis at toxin residue K27 (K27A, K27R, K27E) significantly reduced the toxins affinity for sqKv1A channels. The toxin-channel model illustrates a possible mechanism for the pH-dependent block whereby lysine residues from TsTX-Kalpha (K6, K23) are repelled by protonated H351 on sqKvlA at low pH. Finally, attempts to recombinantly express and purify the first member of a new family of scorpion toxins (beta-K toxins) are presented.
    Description
    University of Maryland, Baltimore. Biochemistry and Molecular Biology. Ph.D. 2002
    Keyword
    Chemistry, Biochemistry
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/1175
    Collections
    Theses and Dissertations School of Medicine
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.