Show simple item record

dc.contributor.authorWeir, M.D.
dc.contributor.authorOates, T.W.
dc.contributor.authorXu, H.H.K.
dc.date.accessioned2020-01-16T14:39:56Z
dc.date.available2020-01-16T14:39:56Z
dc.date.issued2020
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85074498996&doi=10.1016%2fj.actbio.2019.10.023&partnerID=40&md5=003efc859032b9eed82a04ba9e138f8b
dc.identifier.urihttp://hdl.handle.net/10713/11639
dc.description.abstractInfection is a main cause of implant failure. Early implant-related infections often occur in the first 4 weeks post-operation. Inhibiting bacterial adhesion and biofilm formation at the early stage and promoting subsequent implant osseointegration are important for implant success. Our previous studies demonstrated that dimethylaminododecyl methacrylate (DMADDM) provided dental materials with antibacterial effects. In the present study, DMADDM and hydroxyapatite (HA) are loaded on to the titanium (Ti) surface via poly dopamine (PDA) self-polymerization. This local DMADDM-delivery Ti is referred as Ti-PHD. Here we report the two-staged capability of Ti-PHD: (1) in the first stage, releasing DMADDM during the high-infection-risk initial period post-implantation for 4 weeks; (2) then in the second stage, enhancing osteogenesis and promoting osseointegration. Ti-PHD has a porous surface with higher average roughness and greater hydrophilicity than pure Ti. Its biocompatibility is verified in vitro and in vivo. During the first 4 weeks of release, both DMADDM remaining on Ti surface and DMADDM released into the soaking medium greatly reduced the adherence and growth of pathogens. This is further confirmed by the prevention of bone destruction in a rat osteomyelitis model. After releasing DMADDM for 4 weeks, Ti-PHD promotes osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) and new bone formation around the implants in vivo. This article represents the first report on the two-staged, time-dependent antibacterial and osteogenesis effects of Ti-PHD, demonstrating its potential for clinical applications to inhibit implant-associated infections. Statement of Significance: The present study develops a two-staged time-dependent system for local dimethylaminododecyl methacrylate (DMADDM) delivery via Ti implant (referred to as Ti-PHD). DMADDM and hydroxyapatite (HA) are loaded on to the Ti surface with poly dopamine (PDA). Ti-PHD can release DMADDM during the high-risk period of infection in the first stage, and then promote osseointegration and new bone formation in the second stage. This bioactive and therapeutic Ti is promising to inhibit infections and enhance implant success.en_US
dc.description.sponsorshipSchool of Dentistry, University of Maryland, UMSOD International Science and Technology Cooperation Programme, ISTCP: 2017HH0008 2018-YF05-00249-SN National Key Research and Development Program of China Stem Cell and Translational Research: 2016YFC1102700 National Natural Science Foundation of China, NSFC: 81372889, 81430011en_US
dc.description.urihttps://doi.org/10.1016/j.actbio.2019.10.023en_US
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.relation.ispartofActa Biomaterialia
dc.subjectAnimal modelen_US
dc.subjectAntibacterialen_US
dc.subjectBioactive and therapeuticen_US
dc.subjectDimethylaminododecyl methacrylateen_US
dc.subjectImplant-related infectionsen_US
dc.subjectOsseointegrationen_US
dc.titleTwo-staged time-dependent materials for the prevention of implant-related infectionsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.actbio.2019.10.023
dc.identifier.pmid31629895


Files in this item

Thumbnail
Name:
Publisher version

This item appears in the following Collection(s)

Show simple item record