• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Development of Novel Nanostructured Therapeutic Root Canal Dental Sealers with Strong Antibacterial and Remineralization Capabilities

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Baras_umaryland_0373D_11099.pdf
    Size:
    2.757Mb
    Format:
    PDF
    Download
    Author
    Baras, Bashayer Hussain
    Advisor
    Xu, Huakun H.
    Date
    2019
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Root canal therapy aims to remove microorganism or at least reduce them to subcritical levels that permit the host’s immunity to eliminate infection and regenerate damaged tissues. However, due to the complex and variable root canal anatomy and the resistant nature of root canal biofilm, complete elimination of root canal microorganisms is rarely accomplished. In addition, it has been frequently reported that some of the most commonly used irrigating solutions, such as, sodium hypochlorite (NaOCl) and ethylenediaminetetraacetic acid (EDTA) can adversely alter the chemical and mechanical properties of dentin, resulting in a brittle dentin structure that is more susceptible to root fracture. This dissertation aims to develop a therapeutic root canal sealing material with potent antibacterial properties and remineralizaition capabilities through the incorporation of dimethylaminohexadecyl methacrylate (DMAHDM) to provide bacterial contact killing in case of micro leakage, nanoparticles of silver ions (NAg) to eliminate bacteria in the more complex root canal anatomy through release of silver ions, and nanoparticles of amorphous calcium and phosphate (NACP) to reverse the action of NaOCl and EDTA on root dentin and strengthen the root structure through the release of Ca and P ions. In this dissertation projects, the effects of incorporating DMAHDM, NAg, and NACP on the physical and sealing properties were evaluated. The antibiofilm properties were assessed by polysaccharide production, live/dead, and colony-forming units (CFU) assays. The antibiofilm properties of the developed sealer were assessed on cured sealer disks and utilizing a human dentin model. In addition, the effects of NACP on the Ca and P ion release, pH-alkalizing properties, and influence on dentin hardness were all measured. The triple incorporation of DMAHDM, NAg, and NACP did not compromise the physical properties of the root canal sealer and demonstrated sealing properties that were similar to that of a commercial control material. The incorporation of DMAHDM and NAg alone into the root canal sealer demonstrated great reductions in bacterial viability and quantity. However, when both agents were combined the antibiofilm effects were maximized, resulting in CFU reductions of 6 orders of magnitude. The DMAHDM NAg containing root canal sealer was able to kill bacteria not only on the surface of resin disks but also bacteria impregnated inside human dentin. The incorporation of NACP into the respective sealer allowed for the release of high levels of Ca and P ions, neutralized the acid and increased the solution pH, and increased the dentin hardness to match that of sound dentin. This bioactive antibacterial and remineralizing root canal sealer is promising to prevent endodontic treatment failure and secondary endodontic infections while releasing high levels of Ca and P ions that could remineralize and strengthen the tooth structures and potentially prevent future root fractures and teeth extractions.
    Description
    2019
    Biomedical Sciences-Dental School
    University of Maryland, Baltimore
    Ph.D.
    Keyword
    Dentistry
    antibiofilm
    DMAHDM
    NACP
    nano silver
    Enterococcus faecalis
    Nanoparticles
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/11610
    Collections
    Theses and Dissertations School of Dentistry
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.