• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Defining the Mechanisms That Mediate Sexual Differentiation of the Developing Hippocampus

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Kight_umaryland_0373D_11105.pdf
    Size:
    1.597Mb
    Format:
    PDF
    Download
    Author
    Kight, Katherine cc
    0000-0001-9382-4700
    Advisor
    McCarthy, Margaret M., 1958-
    Date
    2019
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Studying the processes by which male and female brains develop differently is not only a rich source for understanding the contrasting mechanisms of brain development that enable an organism to respond appropriately as an adult to intrinsic and extrinsic factors, it is also important for understanding the etiology of the numerous neurodevelopmental disorders that exhibit a sex bias in prevalence or presentation. The hippocampus is an area of the brain responsible for context-dependent memory and regulation of the stress axis, and as such is implicated in many sex-biased neurodevelopmental disorders. There are two striking sex differences in the hippocampus of neonatal rats which may fundamentally shape the circuitry of this region of the brain differently between males and females. First, roughly twice as many proliferating cells are present in the hippocampus during the first week of life in males, compared to females, and second, the timing of the developmental shift in which GABA signaling switches from depolarizing to hyperpolarizing occurs later in males. This thesis sought to determine the mechanisms that promote the sex difference in depolarizing GABA in the neonatal hippocampus of rats, and whether there is a causal relationship between depolarizing GABA and cell genesis in this context. One set of experiments tested the role of the neurotrophin BDNF. Analyses of Bdnf gene expression patterns revealed a baseline sex difference that mirrored the sex difference in cell proliferation. However, Bdnf content in response to steroid hormone signaling in the neonatal hippocampus showed subregion-specific expression patterns that did not correlate with cell proliferation, indicating cell-type specificity of BDNF function in the developing hippocampus. A second set of experiments found female-biased expression in the neonatal hippocampus of several microRNAs known to regulate cell proliferation and neurogenesis. One of these microRNAs, mir124, was tested for its potential role in regulating cell proliferation and the depolarizing response to GABA, using a combination of in vitro and in vivo approaches. Functional studies also tested the role of miR124 in regulating the expression of NKCC1, a key chloride channel involved in regulating depolarizing GABA and proliferation.
    Description
    2019
    Molecular Medicine
    University of Maryland, Baltimore
    Ph.D.
    Keyword
    Neurosciences
    BDNF
    depolarizing GABA
    sex difference
    Brain-Derived Neurotrophic Factor
    Hippocampus
    MicroRNAs
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/11605
    Collections
    Theses and Dissertations School of Medicine
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.