• 40 years of the human T-cell leukemia virus: past, present, and future

      Tagaya, Y.; Matsuoka, M.; Gallo, R. (F1000 Research Ltd., 2019)
      It has been nearly 40 years since human T-cell leukemia virus-1 (HTLV-1), the first oncogenic retrovirus in humans and the first demonstrable cause of cancer by an infectious agent, was discovered. Studies indicate that HTLV-1 is arguably one of the most carcinogenic agents to humans. In addition, HTLV-1 causes a diverse array of diseases, including myelopathy and immunodeficiency, which cause morbidity and mortality to many people in the world, including the indigenous population in Australia, a fact that was emphasized only recently. HTLV-1 can be transmitted by infected lymphocytes, from mother to child via breast feeding, by sex, by blood transfusion, and by organ transplant. Therefore, the prevention of HTLV-1 infection is possible but such action has been taken in only a limited part of the world. However, until now it has not been listed by the World Health Organization as a sexually transmitted organism nor, oddly, recognized as an oncogenic virus by the recent list of the National Cancer Institute/National Institutes of Health. Such underestimation of HTLV-1 by health agencies has led to a remarkable lack of funding supporting research and development of treatments and vaccines, causing HTLV-1 to remain a global threat. Nonetheless, there are emerging novel therapeutic and prevention strategies which will help people who have diseases caused by HTLV-1. In this review, we present a brief historic overview of the key events in HTLV-1 research, including its pivotal role in generating ideas of a retrovirus cause of AIDS and in several essential technologies applicable to the discovery of HIV and the unraveling of its genes and their function. This is followed by the status of HTLV-1 research and the preventive and therapeutic developments of today. We also discuss pending issues and remaining challenges to enable the eradication of HTLV-1 in the future.
    • Adenoviral Vectors as Vaccines for Emerging Avian Influenza Viruses

      Kerstetter, Lucas J; Buckley, Stephen; Bliss, Carly M; Coughlan, Lynda (Frontiers Media S.A., 2021-01-29)
      It is evident that the emergence of infectious diseases, which have the potential for spillover from animal reservoirs, pose an ongoing threat to global health. Zoonotic transmission events have increased in frequency in recent decades due to changes in human behavior, including increased international travel, the wildlife trade, deforestation, and the intensification of farming practices to meet demand for meat consumption. Influenza A viruses (IAV) possess a number of features which make them a pandemic threat and a major concern for human health. Their segmented genome and error-prone process of replication can lead to the emergence of novel reassortant viruses, for which the human population are immunologically naïve. In addition, the ability for IAVs to infect aquatic birds and domestic animals, as well as humans, increases the likelihood for reassortment and the subsequent emergence of novel viruses. Sporadic spillover events in the past few decades have resulted in human infections with highly pathogenic avian influenza (HPAI) viruses, with high mortality. The application of conventional vaccine platforms used for the prevention of seasonal influenza viruses, such as inactivated influenza vaccines (IIVs) or live-attenuated influenza vaccines (LAIVs), in the development of vaccines for HPAI viruses is fraught with challenges. These issues are associated with manufacturing under enhanced biosafety containment, and difficulties in propagating HPAI viruses in embryonated eggs, due to their propensity for lethality in eggs. Overcoming manufacturing hurdles through the use of safer backbones, such as low pathogenicity avian influenza viruses (LPAI), can also be a challenge if incompatible with master strain viruses. Non-replicating adenoviral (Ad) vectors offer a number of advantages for the development of vaccines against HPAI viruses. Their genome is stable and permits the insertion of HPAI virus antigens (Ag), which are expressed in vivo following vaccination. Therefore, their manufacture does not require enhanced biosafety facilities or procedures and is egg-independent. Importantly, Ad vaccines have an exemplary safety and immunogenicity profile in numerous human clinical trials, and can be thermostabilized for stockpiling and pandemic preparedness. This review will discuss the status of Ad-based vaccines designed to protect against avian influenza viruses with pandemic potential.
    • Altering Antigen Charge to Control Self-Assembly and Processing of Immune Signals During Cancer Vaccination.

      Tsai, Shannon J; Amerman, Allie; Jewell, Christopher M (Frontiers Media S.A., 2021-01-06)
      Biomaterial delivery systems offer unique potential to improve cancer vaccines by offering targeted delivery and modularity to address disease heterogeneity. Here, we develop a simple platform using a conserved human melanoma peptide antigen (Trp2) modified with cationic arginine residues that condenses an anionic toll-like receptor agonist (TLRa), CpG, into polyplex-like nanoparticles. We reasoned that these structures could offer several useful features for immunotherapy – such as tunable loading, co-delivery of immune cues, and cargo protection – while eliminating the need for synthetic polymers or other complicating delivery systems. We demonstrate that Trp2/CpG polyplexes can readily form over a range of Trp2:CpG ratios and improve antigen uptake by primary antigen presenting cells. We show antigen loading can be tuned by interchanging Trp2 peptides with defined charges and numbers of arginine residues. Notably, these polyplexes with greater antigen loading enhance the functionality of Trp-2 specific T cells and in a mouse melanoma model, decrease tumor burden and improve survival. This work highlights opportunities to control the biophysical properties of nanostructured materials built from immune signals to enhance immunotherapy, without the added complexity or background immune effects often associated with synthetic carriers.
    • A Case-Control Study of the 2019 Influenza Vaccine and Incidence of COVID-19 Among Healthcare Workers.

      Massoudi, Nilofar; Mohit, Babak (2020-11-26)
      Purpose: The influenza vaccine is essential in reducing the influenza burden, especially among healthcare workers (HCW). Experimental studies suggest both coronaviruses and influenza viruses engage with the angiotensin-converting enzyme 2 (ACE 2) and tetraspanin antibodies, and that ACE 2 tetraspanin antibodies in turn may inhibit both coronavirus and low-pathogenicity influenza A viruses (LP IAV) infections. This study aims to investigate the potential clinical association between receiving the 2019 influenza vaccine and the incidence of COVID-19 among HCW. Methods: We designed a case–control study within a hospital setting in Iran when it became a center for treating COVID-19 patients. We collected data and calculated relevant incidence and associative measures among HCW who had received the 2019 influenza vaccine as compared to HCW who had not received the vaccine. Results: Our total sample size was 261 HCW. Of 80 COVID-19 incident cases, three cases had received the influenza vaccine, while 87 of 181 controls had received the vaccine. The odds ratio (OR) and confidence interval (CI) of being vaccinated were 0.04 (95% CI: 0.01 to 0.14) among COVID-19 cases as compared to controls. Conclusions: Significant findings suggest that the 2019 influenza vaccine may have a protective association against COVID-19 among HCW.
    • Characterization of Schu S4 aro mutants as live attenuated tularemia vaccine candidates

      Grassel, C.; Lipsky, M.; Vogel, S.N.; Barry, E.M. (Taylor and Francis Inc., 2020)
      There is a need for development of an effective vaccine against Francisella tularensis, as this potential bioweapon has a high mortality rate and low infectious dose when delivered via the aerosol route. Moreover, this Tier 1 agent has a history of weaponization. We engineered targeted mutations in the Type A strain F. tularensis subspecies tularensis Schu S4 in aro genes encoding critical enzymes in aromatic amino acid biosynthesis. F. tularensis Schu S4ΔaroC, Schu S4ΔaroD, and Schu S4ΔaroCΔaroD mutant strains were attenuated for intracellular growth in vitro and for virulence in vivo and, conferred protection against pulmonary wild-type (WT) F. tularensis Schu S4 challenge in the C57BL/6 mouse model. F. tularensis Schu S4ΔaroD was identified as the most promising vaccine candidate, demonstrating protection against high-dose intranasal challenge; it protected against 1,000 CFU Schu S4, the highest level of protection tested to date. It also provided complete protection against challenge with 92 CFU of a F. tularensis subspecies holarctica strain (Type B). Mice responded to vaccination with Schu S4ΔaroD with systemic IgM and IgG2c, as well as the production of a functional T cell response as measured in the splenocyte-macrophage co-culture assay. This vaccine was further characterized for dissemination, histopathology, and cytokine/chemokine gene induction at defined time points following intranasal vaccination which confirmed its attenuation compared to WT Schu S4. Cytokine, chemokine, and antibody induction patterns compared to wild-type Schu S4 distinguish protective vs. pathogenic responses to F. tularensis and elucidate correlates of protection associated with vaccination against this agent. Copyright 2020 The Author(s).
    • Consensus Report on Shigella Controlled Human Infection Model: Immunological Assays

      Kaminski, R.W.; Pasetti, M.F.; Aguilar, A.O. (Oxford University Press, 2019)
      Moderate to severe diarrhea caused by Shigella is a global health concern due to its substantial contribution to morbidity and mortality in children aged <5 years in low- and middle-income countries. Although antibiotic treatment can be effective, emerging antimicrobial resistance, limited access, and cost affirm the role of vaccines as the most attractive countermeasure. Controlled human infection models (CHIMs) represent a valuable tool for assessing vaccine efficacy and potentially accelerating licensure. Currently, immunological analysis during CHIM studies is customized based on vaccine type, regimen, and administration route. Additionally, differences in type of immunoassays and procedures used limit comparisons across studies. In November 2017, an expert working group reviewed Shigella CHIM studies performed to date and developed consensus guidelines on prioritization of immunoassays, specimens, and collection time points. Immunoassays were ranked into 3 tiers, with antibodies to Shigella lipopolysaccharide (LPS) being the highest priority. To facilitate comparisons across clinical studies, a second workshop was conducted in December 2017, which focused on the pathway toward a recognized enzyme-linked immunosorbent assay (ELISA) to determine serum immunoglobulin G titers against Shigella LPS. The consensus of the meeting was to establish a consortium of international institutions with expertise in Shigella immunology that would work with the National Institute for Biological Standards and Control to establish a harmonized ELISA, produce a reference sera, and identify a reliable source of Shigella LPS for global utilization. Herein we describe efforts toward establishing common procedures to advance Shigella vaccine development, support licensure, and ultimately facilitate vaccine deployment and uptake. Copyright The Author(s) 2019.
    • Deletions in guaBA and htrA but not clpX or rfaL constitute a live-attenuated vaccine strain of Salmonella Newport to protect against serogroup C2-C3 Salmonella in mice

      Fuche, Fabien J.; Jones, Jennifer A.; Ramachandran, Girish; Higginson, Ellen E.; Simon, Raphael; Tennant, Sharon M. (Taylor and Francis Inc., 2019-07-12)
      Non-typhoidal Salmonella (NTS) are a leading cause of foodborne infections worldwide, and serogroups B, C1, C2-C3 and D are the most common serogroups associated with human disease. While live vaccine candidates that protect against S. Typhimurium (serogroup B) and S. Enteritidis (serogroup D) have been described by us and others, far less effort has been directed towards vaccines that target either serogroup C1 or C2-C3 Salmonella. Here we describe a Salmonella Newport-based live-attenuated vaccine (serogroup C2-C3). Deletion of the genes clpX or rfaL, previously used in live vaccines to attenuate S. Typhimurium and/or S. Enteritidis, failed to attenuate S. Newport. However, we found that deletion of either guaBA or htrA raised the 50% lethal dose of S. Newport in an intraperitoneal infection model in BALB/c mice. Our live-attenuated vaccine candidate CVD 1966 (S. Newport ΔguaBA ΔhtrA) elicited strong antibody responses against COPS, flagellin and outer membrane proteins when administered intraperitoneally or orally. Following lethal challenge with the parental virulent strain of S. Newport, we observed vaccine efficacies of 53% for immunization via the intraperitoneal route and 47% for immunization via the oral route. Following intraperiteonal immunization, the vaccine also significantly reduced the bacterial burden of challenge organisms in the liver and spleen. Interestingly, reducing the LPS chain length by deleting rfaL did not induce a stronger immune response towards surface antigens, and failed to elicit any protection against lethal homologous challenge. In conclusion, we have developed a live-attenuated Salmonella serogroup C2-C3 vaccine that we are further evaluating. © 2018 The Author(s).
    • The Diversity of Lipopolysaccharide (O) and Capsular Polysaccharide (K) Antigens of Invasive Klebsiella pneumoniae in a Multi-Country Collection

      Choi, M.; Hegerle, N.; Nkeze, J.; Sen, S.; Jamindar, S.; Nasrin, S.; Sen, S.; Permala-Booth, J.; Sinclair, J.; Tapia, M.D.; et al. (Frontiers Media S.A., 2020)
      Klebsiella pneumoniae is a common cause of sepsis and is particularly associated with healthcare-associated infections. New strategies are needed to prevent or treat infections due to the emergence of multi-drug resistant K. pneumoniae. The goal of this study was to determine the diversity and distribution of O (lipopolysaccharide) and K (capsular polysaccharide) antigens on a large (>500) global collection of K. pneumoniae strains isolated from blood to inform vaccine development efforts. A total of 645 K. pneumoniae isolates were collected from the blood of patients in 13 countries during 2005-2017. Antibiotic susceptibility was determined using the Kirby-Bauer disk diffusion method. O antigen types including the presence of modified O galactan types were determined by PCR. K types were determined by multiplex PCR and wzi capsular typing. Sequence types of isolates were determined by multilocus sequence typing (MLST) targeting seven housekeeping genes. Among 591 isolates tested for antimicrobial resistance, we observed that 19.3% of isolates were non-susceptible to carbapenems and 62.1% of isolates were multidrug resistant (from as low as 16% in Sweden to 94% in Pakistan). Among 645 isolates, four serotypes, O1, O2, O3, and O5, accounted for 90.1% of K. pneumoniae strains. Serotype O1 was associated with multidrug resistance. Fifty percent of 199 tested O1 and O2 strains were gmlABC-positive, indicating the presence of the modified polysaccharide subunit D-galactan III. The most common K type was K2 by both multiplex PCR and wzi capsular typing. Of 39 strains tested by MLST, 36 strains were assigned to 26 known sequence types of which ST14, ST25, and ST258 were the most common. Given the limited number of O antigen types, diverse K antigen types and the high multidrug resistance, we believe that an O antigen-based vaccine would offer an excellent prophylactic strategy to prevent K. pneumoniae invasive infection. Copyright 2020 Choi, et. al.
    • Grand Challenges in Pharmaceutical Research Series: Ridding the Cold Chain for Biologics.

      Yu, Yihua Bruce; Briggs, Katharine T; Taraban, Marc B; Brinson, Robert G; Marino, John P (Springer Nature, 2021-02-08)
      Biologics are complex pharmaceuticals that include formulated proteins, plasma products, vaccines, cell and gene therapy products, and biological tissues. These products are fragile and typically require cold chain for their delivery and storage. Delivering biologics, while maintaining the cold chain, whether standard (2°C to 8°C) or deepfreeze (as cold as -70°C), requires extensive infrastructure that is expensive to build and maintain. This poses a huge challenge to equitable healthcare delivery, especially during a global pandemic. Even when the infrastructure is in place, breaches of the cold chain are common. Such breaches may damage the product, making therapeutics and vaccines ineffective or even harmful. Rather than strengthening the cold chain through building more infrastructure and imposing more stringent guidelines, we suggest that money and effort are best spent on making the cold chain unnecessary for biologics delivery and storage. To meet this grand challenge in pharmaceutical research, we highlight areas where innovations are needed in the design, formulation and biomanufacturing of biologics, including point-of-care manufacturing and inspection. These technological innovations would rely on fundamental advances in our understanding of biomolecules and cells. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature.
    • Immunogenicity and Induction of Functional Antibodies in Rabbits Immunized with a Trivalent Typhoid-Invasive Nontyphoidal Salmonella Glycoconjugate Formulation

      Baliban, Scott M.; Allen, Jessica C.; Curtis, Brittany; Amin, Mohammed N.; Levine, Myron M.; Simon, Raphael (Molecular Diversity Preservation International, 2018-07-17)
      Typhoid fever due to Salmonella Typhi and invasive nontyphoidal Salmonella (iNTS) infections caused by serovars Enteritidis (SE) and Typhimurium (STm) are major pediatric health problems in sub-Saharan Africa. Typhoid has high complication rates, and iNTS infections have high case fatality rates; moreover, emerging antimicrobial resistance is diminishing treatment options. Vi capsule-based typhoid conjugate vaccine (Typbar-TCV™), licensed in India and pre-qualified by the World Health Organization, elicits durable immunity when administered to infants, but no iNTS vaccines are licensed or imminent. We have developed monovalent SE and STm glycoconjugate vaccines based on coupling lipopolysaccharide-derived core-O polysaccharide (COPS) to phase 1 flagellin protein (FliC) from the homologous serovar. Herein, we report the immunogenicity of multivalent formulations of iNTS COPS:FliC conjugates with Typbar-TCV™. Rabbits immunized with the trivalent typhoid-iNTS glycoconjugate vaccine generated high titers of serum IgG antibody to all three polysaccharide antigens for which anti-COPS IgG antibodies were directed primarily against serogroup-specific OPS epitopes. Responses to SE and STm FliC were lower relative to anti-COPS titers. Post-vaccination rabbit sera mediated bactericidal activity in-vitro, and protected mice after passive transfer against challenge with virulent SE or STm Malian blood isolates. These results support accelerated progression to clinical trials.
    • Impact of dose, route, and composition on the immunogenicity of immune polyelectrolyte multilayers delivered on gold templates

      Zhang, P.; Andorko, J.I.; Jewell, C.M. (John Wiley and Sons Inc., 2017)
      Biomaterial vaccines offer new capabilities that can be exploited for both infectious disease and cancer. We recently developed a novel vaccine platform based on self‐assembly of immune signals into immune polyelectrolyte multilayers (iPEMs). These iPEM vaccines are electrostatically assembled from peptide antigens and nucleic acid‐based toll‐like receptor agonists (TLRas) that serve as molecular adjuvants. Gold nanoparticles (AuNPs) coated with iPEMs stimulate effector cytokine secretion in vitro and expand antigen‐specific T cells in mice. Here we investigated how the dose, injection route, and choice of molecular adjuvant impacts the ability of iPEMs to generate T cell immunity and anti‐tumor response in mice. Three injection routes—intradermal, subcutaneous, and intramuscular—and three iPEM dosing levels were employed. Intradermal injection induced the most potent antigen‐specific T cell responses and, for all routes, the level of response was dose‐dependent. We further discovered that these vaccines generate durable memory, indicated by potent, antigen‐specific CD8+ T cell recall responses in mice challenged with vaccine 49 days after a prime‐boost immunization regimen. In a common exogenous antigen melanoma model, iPEM vaccines slowed or stopped tumor growth more effectively than equivalent ad‐mixed formulations. Further, iPEMs containing CpG—a TLR9a—were more potent compared with iPEMs containing polyIC, a TLR3a. These findings demonstrate the ability of iPEMs to enhance response to several different classes of vaccine cargos, supporting iPEMs as a simple vaccine platform that mimics attractive features of other nanoparticles using immune signals that can be self‐assembled or coated on substrates. Copyright 2016 Wiley Periodicals, Inc.
    • The importance of genomic analysis in cracking the coronavirus pandemic

      Zella, Davide; Giovanetti, Marta; Cella, Eleonora; Borsetti, Alessandra; Ciotti, Marco; Ceccarelli, Giancarlo; D'Ettorre, Gabriella; Pezzuto, Aldo; Tambone, Vittoradolfo; Campanozzi, Laura; et al. (Taylor and Francis Inc., 2021-04-28)
      Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has pushed the scientific community to undertake intense research efforts. Understanding SARS-CoV-2 biology is necessary to discover therapeutic or preventive strategies capable of containing the pandemic. Knowledge of the structural characteristics of the virus genome and proteins is essential to find targets for therapies and immunological interventions.Areas covered: This review covers different areas of expertise, genomic analysis of circulating strains, structural biology, viral mutations, molecular diagnostics, disease, and vaccines. In particular, the review is focused on the molecular approaches and modern clinical strategies used in these fields.Expert opinion: Molecular approaches to SARS-CoV-2 pandemic have been critical to shorten time for new diagnostic, therapeutic and prevention strategies. In this perspective, the entire scientific community is moving in the same direction. Vaccines, together with the development of new drugs to treat the disease, represent the most important strategy to protect human from viral disease and prevent further spread. In this regard, new molecular technologies have been successfully implemented. The use of a novel strategy of communication is suggested for a better diffusion to the broader public of new data and results.
    • In Vivo Expansion of Melanoma-Specific T Cells Using Microneedle Arrays Coated with Immune-Polyelectrolyte Multilayers

      Zeng, Q.; Gammon, J.M.; Tostanoski, L.H. (American Chemical Society, 2017)
      Microneedles (MNs) are micron-scale polymeric or metallic structures that offer distinct advantages for vaccines by efficiently targeting skin-resident immune cells, eliminating injection-associated pain, and improving patient compliance. These advantages, along with recent studies showing therapeutic benefits achieved using traditional intradermal injections in human cancer patients, suggest MN delivery might enhance cancer vaccines and immunotherapies. We recently developed a new class of polyelectrolyte multilayers based on the self-assembly of model peptide antigens and molecular toll-like receptor agonists (TLRa) into ultrathin, conformal coatings. Here, we reasoned that these immune polyelectrolyte multilayers (iPEMs) might be a useful platform for assembling cancer vaccine components on MN arrays for intradermal delivery from these substrates. Using conserved human melanoma antigens and a potent TLRa vaccine adjuvant, CpG, we show that iPEMs can be assembled on MNs in an automated fashion. These films, prepared with up to 128 layers, are approximately 200 nm thick but provide cancer vaccine cargo loading &gt;225 ?g/cm2. In cell culture, iPEM cargo released from MNs is internalized by primary dendritic cells, promotes activation of these cells, and expands T cells during coculture. In mice, application of iPEM-coated MNs results in the codelivery of tumor antigen and CpG through the skin, expanding tumor-specific T cells during initial MN applications and resulting in larger memory recall responses during a subsequent booster MN application. This study support MNs coated with PEMs built from tumor vaccine components as a well-defined, modular system for generating tumor-specific immune responses, enabling new approaches that can be explored in combination with checkpoint blockade or other combination cancer therapies.
    • Introduction of Typhoid Conjugate Vaccines in Africa and Asia

      Neuzil, K.M.; Pollard, A.J.; Marfin, A.A. (Oxford University Press, 2019)
      Typhoid fever continues to be a major public health concern, particularly in many low- and middle-income countries. The current threats of increasing antimicrobial resistance, urbanization, and climate change elevate the urgency for better prevention and control efforts for typhoid fever. In 2017, the results of ground-breaking research on typhoid conjugate vaccines (TCVs), the World Health Organization prequalification of a TCV, and global policy and financing decisions have set the stage for the introduction of TCVs into routine immunization programs in endemic countries. Country-level decision-making and program planning are critical for local uptake and sustainability. © 2019 The Author(s).
    • Maternal Antibodies Elicited by Immunization With an O- Polysaccharide Glycoconjugate Vaccine Protect Infant Mice Against Lethal Salmonella Typhimurium Infection

      Baliban, S.M.; Curtis, B.; Amin, M.N.; Levine, M.M.; Pasetti, M.F.; Simon, R. (Frontiers, 2019)
      Non-typhoidal Salmonella (NTS) are a leading cause of pediatric invasive bacterial infections in sub-Saharan Africa with high associated case fatality rates in children under 5 years old. We have developed glycoconjugate vaccines consisting of the lipid A-removed surface polysaccharide of NTS, core and O-polysaccharide (COPS), and the flagellar monomer protein (FliC) from the homologous serovar as the carrier. We previously established that COPS:FliC was immunogenic and protective in mice immunized as adults or infants; however, the brief period of murine infancy precluded the evaluation of protection against invasive NTS (iNTS) disease in early life. In the present study, we used a mouse model of maternal immunization to investigate transmission of S. Typhimurium COPS:FliC-induced maternal antibodies and protection against lethal iNTS challenge in infant mice. We found that vaccinated dams developed high levels of COPS- and FliC-specific IgG, which were transferred to their offspring. Sera from both vaccinated mothers and their litters mediated complement-dependent bactericidal activity in-vitro. Passively immunized 2-week old infant mice born to vaccinated mothers were fully protected from challenge with an S. Typhimurium blood isolate from sub-Saharan Africa. The pre-clinical findings reported herein demonstrate that anti-COPS:FliC antibodies induced by vaccination are sufficient for protection of murine infants against experimental S. Typhimurium infection. By underscoring the protective role of antibody, our results suggest that maintaining an adequate titer of protective anti-Salmonella antibodies during early life, either through pediatric or maternal COPS:FliC vaccination, may reduce iNTS disease in young children in sub-Saharan Africa.
    • MYC oncogene is associated with suppression of tumor immunity and targeting Myc induces tumor cell immunogenicity for therapeutic whole cell vaccination

      Wu, Xiaofang; Nelson, Marie; Basu, Mousumi; Srinivasan, Priya; Lazarski, Christopher; Zhang, Peng; Zheng, Pan; Sandler, Anthony David (BMJ Publishing Group, 2021-03-23)
      Background MYC oncogene is deregulated in 70% of all human cancers and is associated with multiple oncogenic functions including immunosuppression in the tumor microenvironment. The role of MYC in the immune microenvironment of neuroblastoma and melanoma is investigated and the effect of targeting Myc on immunogenicity of cancer cells is evaluated. Methods Immune cell infiltrates and immunogenic pathway signatures in the context of MYCN amplification were analyzed in human neuroblastoma tumors and in metastatic melanoma. Dose response and cell susceptibility to MYC inhibitors (I-BET726 and JQ1) were determined in mouse cell lines. The influence of downregulating Myc in tumor cells was characterized by immunogenic pathway signatures and functional assays. Myc-suppressed tumor cells were used as whole cell vaccines in preclinical neuroblastoma and melanoma models. Results Analysis of immune phenotype in human neuroblastoma and melanoma tumors revealed that MYCN or c-MYC amplified tumors respectively are associated with suppressed immune cell infiltrates and functional pathways. Targeting Myc in cancer cells with I-BET726 and JQ1 results in cell cycle arrest and induces cell immunogenicity. Combining vaccination of Myc-inhibited tumor cells with checkpoint inhibition induced robust antitumor immunity and resulted in therapeutic cancer vaccine therapy in mouse neuroblastoma tumors. Despite vigorous antitumor immunity in the mouse melanoma model, upregulation of immunosuppressive pathways enabled tumor escape. Conclusions This study demonstrates that the Myc oncogene is an appropriate target for inducing tumor cell immunogenicity and suggests that Myc-suppressed whole tumor cells combined with checkpoint therapy could be used for formulating a personalized therapeutic tumor vaccine.
    • The Nucleocapsid Protein of SARS-CoV-2: a Target for Vaccine Development

      Dutta, N.K.; Mazumdar, K.; Gordy, J.T. (American Society for Microbiology, 2020)
    • Refinement of a Live Attenuated Salmonella enterica Serovar Newport Vaccine with Improved Safety

      Nasrin, Shamima; Fuche, Fabien J; Sears, Khandra T; Jones, Jennifer A; Levine, Myron M; Simon, Raphael; Tennant, Sharon M (MDPI AG, 2021-01-16)
      Non-typhoidal Salmonella (NTS) is a major cause of gastroenteritis and is responsible for approximately 93 million cases annually. In healthy individuals, gastroenteritis caused by NTS is usually self-limiting, however, NTS can cause severe invasive disease in immunocompromised patients. Very little research has been directed towards development of vaccines against Salmonella serogroups O:6,7 or O:8. We have constructed a live attenuated serogroup O:8 vaccine, CVD 1979, by deleting guaBA, htrA, and aroA from the genome of S. Newport. We have shown that the candidate vaccine is well tolerated in mice and elicits serum immunoglobulin G (IgG) antibodies against core O-polysaccharide (COPS) when administered orally. Immunized mice were challenged intraperitoneally with wild-type S. Newport and bacterial burden in the liver and spleen was found to be significantly reduced in the livers of immunized mice compared to control mice. We also observed moderate vaccine efficacy (45%) against lethal challenge with the serogroup O:8 serovar, S. Muenchen, but low vaccine efficacy (28%) following lethal challenge with a serogroup O:6,7 serovar, S. Virchow. In vitro, we have shown that antibodies generated by CVD 1979 only recognize lipopolysaccharide (LPS) from serogroup O:8 but not serogroup O:6,7 serovars, and that they mediate opsonophagocytic antibody (OPA) activity against serogroup O:8 but not serogroup O:6,7 serovars. We also showed that OPA activity can be blocked by pre-incubating the antisera with serogroup O:8 lipopolysaccharide. Taken together, our data demonstrate that we have constructed a well-tolerated, effective live attenuated S. Newport vaccine which elicits functional antibodies against serogroup O:8 but not O:6,7 serovars.
    • Sequence variations in the ETEC CS6 operon affect transcript and protein expression

      Moon, Jonathan; Barry, Eileen M (Taylor and Francis Inc., 2021-10-21)
      Enterotoxigenic Escherichia coli (ETEC) is a leading cause of diarrheal disease in developing nations where it accounts for a significant disease burden in children between the ages of 0 to 59 months. It is also the number one bacterial causative agent of traveler's diarrhea. ETEC infects hosts through the fecal-oral route and utilizes colonization factors (CF) to adhere within the small intestine. Over 25 CFs have been identified; 7 are considered major CFs and a vaccine targeting these is predicted to provide protection against up to 66% of ETEC associated disease. Coli Surface Antigen 6 (CS6) is a major CF and is associated with disease-causing ETEC isolates. Analysis of the CS6 operon sequence led to the identification of two regions of variability among clinical isolates which we predicted exert effects on CS6 transcript and protein expression. A total of 7 recombinant E. coli strains were engineered to encode the CS6 operon in wild-type, hybrid, and mutant configurations. Western blot analysis and RT-qPCR provided evidence to support the importance of an intergenic hairpin structure on CS6 expression. Our results reveal the significance of CS6 sequence selection regarding ETEC vaccine development and present novel information regarding CS6 sequence variation in WT ETEC strains.
    • The Time is Now to Control Typhoid

      Pollard, A.J.; Marfin, A.A.; Neuzil, K.M. (Oxford Academic, 2019)