• Anti-SARS-CoV-2 immune responses in patients receiving an allogeneic stem cell or organ transplant

      Atanackovic, Djordje; Luetkens, Tim; Avila, Stephanie V.; Hardy, Nancy M.; Lutfi, Forat; Sanchez-Petitto, Gabriela; Mause, Erica Vander; Glynn, Nicole; Mannuel, Heather D.; Alkhaldi, Hanan; et al. (MDPI AG, 2021-07-03)
      Patients after autologous (autoSCT) and allogeneic stem cell transplantation (alloSCT) are at an increased risk of COVID-19-related morbidity and mortality, compounded by an immune system weakened by the underlying malignancy and prior treatments. Allogeneic transplantation, including stem cell and solid organ transplants, requires intensive immunosuppressive prophylaxis, which may further undermine the development of a protective vaccine-induced anti-viral immunity. Herein, we report on short- and long-term antiviral immune responses in two peri-stem cell transplant recipients and a third patient who received a COVID-19 vaccination after kidney transplantation. Our data indicate that: (1) patients post-alloSCT may be able to mount an anti-COVID-19 immune response; however, a sufficient time interval between transplant and exposure may be of critical importance; (2) alloSCT recipients with preexisting anti-SARS-CoV-2 immunity are at risk for losing protective humoral immunity following transplantation, particularly if the stem-cell donor lacks antiviral immunity, e.g., vaccine-derived immunity; and (3) some post-transplant patients are completely unable to build an immune response to a COVID-19 vaccine, perhaps based on the prophylactic suppression of T cell immunity.
    • Association between S. Typhi-specific memory CD4+ and CD8+ T responses in the terminal ileum mucosa and in peripheral blood elicited by the live oral typhoid vaccine Ty21a in humans

      Booth, Jayaum S.; Goldberg, Eric; Patil, Seema A.; Greenwald, Bruce D.; Sztein, Marcelo B. (Taylor and Francis Inc., 2019-03-03)
      CD4+ and CD8+ T subsets are essential components of the adaptive immune system which act in concert at the site of infections to effectively protect against pathogens. Very limited data is available in humans regarding the relationship between CD4+ and CD8+ S. Typhi responsive cells in the terminal ileum mucosa (TI) and peripheral blood following Ty21a oral typhoid immunization. Here, we compared TI lamina propria mononuclear cells (LPMC) and peripheral blood CD4+ and CD8+ T memory (TM) subsets responses and their relationship by Spearman’s correlation following Ty21a immunization in volunteers undergoing routine colonoscopy. We observed that Ty21a immunization (i) influences the homing and accumulation of both CD4+ and CD8+ T cells in the TI, particularly integrin α4β7+ CCR9+ CD8+ T cells, (ii) elicits significantly higher frequencies of LPMC S. Typhi-responsive CD8+ T multifunctional (CD107a, IFNγ, IL-17A and/or MIP1β) cells than their CD4+ T counterparts, and (iii) results in the correlation of LPMC CD4+ Teffector/memory (TEM) S. Typhi responses (CD107a, IFNγ, TNFα, IL-17A and/or MIP1β) to their LPMC CD8+ TEM counterparts. Moreover, we demonstrated that these positive correlations between CD4+ and CD8+ TEM occur primarily in TI LPMC but not in PBMC, suggesting important differences in responses between the mucosal and systemic compartments following oral Ty21a immunization. This study provides the first demonstration of the correlation of S. Typhi-specific CD4+ and CD8+ TM responses in the human terminal ileum mucosa and provides valuable information regarding the generation of mucosal and systemic immune responses following oral Ty21a-immunization which might impact future vaccine design and development. © 2019, © 2019 The Author(s).
    • B and T Cell Immunity in Tissues and Across the Ages.

      Booth, Jayaum S; Toapanta, Franklin R (MDPI AG, 2021-01-06)
      B and T cells are key components of the adaptive immune system and coordinate multiple facets of immunity including responses to infection, vaccines, allergens, and the environment. In humans, B- and T-cell immunity has been determined using primarily peripheral blood specimens. Conversely, human tissues have scarcely been studied but they host multiple adaptive immune cells capable of mounting immune responses to pathogens and participate in tissue homeostasis. Mucosal tissues, such as the intestines and respiratory track, are constantly bombarded by foreign antigens and contain tissue-resident memory T (TRM) cells that exhibit superior protective capacity to pathogens. Also, tissue-resident memory B (BRM) cells have been identified in mice but whether humans have a similar population remains to be confirmed. Moreover, the immune system evolves throughout the lifespan of humans and undergoes multiple changes in its immunobiology. Recent studies have shown that age-related changes in tissues are not necessarily reflected in peripheral blood specimens, highlighting the importance of tissue localization and subset delineation as essential determinants of functional B and T cells at different life stages. This review describes our current knowledge of the main B- and T-cell subsets in peripheral blood and tissues across age groups.
    • Bacille Calmette-Guérin Vaccine Strain Modulates the Ontogeny of Both Mycobacterial-Specific and Heterologous T Cell Immunity to Vaccination in Infants

      Kiravu, A.; Abimiku, A.; InFANT, Study, Team (Frontiers Media S.A., 2019)
      Differences in Bacille Calmette-Guérin (BCG) immunogenicity and efficacy have been reported, but various strains of BCG are administered worldwide. Since BCG immunization may also provide protection against off-target antigens, we sought to identify the impact of different BCG strains on the ontogeny of vaccine-specific and heterologous vaccine immunogenicity in the first 9 months of life, utilizing two African birth cohorts. A total of 270 infants were studied: 84 from Jos, Nigeria (vaccinated with BCG-Bulgaria) and 187 from Cape Town, South Africa (154 vaccinated with BCG-Denmark and 33 with BCG-Russia). Infant whole blood was taken at birth, 7, 15, and 36 weeks and short-term stimulated (12 h) in vitro with BCG, Tetanus and Pertussis antigens. Using multiparameter flow cytometry, CD4+ T cell memory subset polyfunctionality was measured by analyzing permutations of TNF-α, IL-2, and IFN-γ expression at each time point. Data was analyzed using FlowJo, SPICE, R, and COMPASS. We found that infants vaccinated with BCG-Denmark mounted significantly higher frequencies of BCG-stimulated CD4+ T cell responses, peaking at week 7 after immunization, and possessed durable polyfunctional CD4+ T cells that were in a more early differentiated memory stage when compared with either BCG-Bulgaria and BCG-Russia strains. The latter responses had lower polyfunctional scores and tended to accumulate in a CD4+ T cell naïve-like state (CD45RA+CD27+). Notably, BCG-Denmark immunization resulted in higher magnitudes and polyfunctional cytokine responses to heterologous vaccine antigens (Tetanus and Pertussis). Collectively, our data show that BCG strain was the strongest determinant of both BCG-stimulated and heterologous vaccine stimulated T cell magnitude and polyfunctionality. These findings have implications for vaccine policy makers, manufacturers and programs worldwide and also suggest that BCG-Denmark, the first vaccine received in many African infants, has both specific and off-target effects in the first few months of life, which may provide an immune priming benefit to other EPI vaccines. Copyright 2019The Authors.
    • Depletion of CD4 and CD8 positive T Cells impairs venous thrombus resolution in mice

      Mukhopadhyay, S.; Gabre, J.; Chabasse, C.; Bromberg, J.S.; Antalis, T.M.; Sarkar, R. (MDPI AG, 2020)
      Resolution of deep venous thrombosis involves coordinated inflammatory processes. T cells regulate inflammation in vivo and modulate vascular remodeling in other settings, but their role in venous thrombus resolution remains undefined. To determine the role of T cells in venous thrombus resolution in vivo, stasis induced thrombi were created by vena cava ligation in outbred CD?1 mice. CD4 and CD8 positive T cells, as determined by flow cytometry, were present in thrombi both during thrombus formation and resolution. Depletion of the CD4 and CD8 positive T cells by antibody treatment selectively impaired thrombus resolution compared to animals treated with isotype control antibodies, without an effect on venous thrombus formation. Quantitation of intra-thrombus macrophage numbers, fibrinolytic marker expression, and gelatinolytic activity by zymography revealed that T cell depletion decreased the number of macrophages, reduced the expression of fibrinolytic marker urokinase plasminogen activator (uPA), and decreased the activity of matrix metalloprotinease?9 (MMP?9). These data implicate CD4 and CD8 positive T cells in functionally contributing to venous thrombus resolution, thus representing a potential therapeutic target, but also underscoring potential risks involved in T cell depletion used clinically for solid organ and hematopoietic transplantation procedures. Copyright 2020 by the authors.
    • Lipid-Mediated Insertion of Toll-Like Receptor (TLR) Ligands for Facile Immune Cell Engineering

      Zhang, M.H.; Slaby, E.M.; Szeto, G.L. (Frontiers Media S.A., 2020)
      Cell-based immunotherapies have tremendous potential to treat many diseases, such as activating immunity in cancer or suppressing it in autoimmune diseases. Most cell-based cancer immunotherapies in the clinic provide adjuvant signals through genetic engineering to enhance T cell functions. However, genetically encoded signals have minimal control over dosing and persist for the life of a cell lineage. These properties make it difficult to balance increasing therapeutic efficacy with reducing toxicities. Here, we demonstrated the potential of phospholipid-coupled ligands as a non-genetic system for immune cell engineering. This system provides simple, controlled, non-genetic adjuvant delivery to immune cells via lipid-mediated insertion into plasma membranes. Lipid-mediated insertion (termed depoting) successfully delivered Toll-like receptor (TLR) ligands intracellularly and onto cell surfaces of diverse immune cells. These ligands depoted into immune cells in a dose-controlled fashion and did not compete during multiplex pairwise loading. Immune cell activation could be enhanced by autocrine and paracrine mechanisms depending on the biology of the TLR ligand tested. Depoted ligands functionally persisted on plasma membranes for up to 4 days in naïve and activated T cells, enhancing their activation, proliferation, and skewing cytokine secretion. Our data showed that depoted ligands provided a persistent yet non-permanent adjuvant signal to immune cells that may minimize the intensity and duration of toxicities compared to permanent genetic delivery. Altogether, these findings demonstrate potential for lipid-mediated depoting as a universal cell engineering approach with unique, complementary advantages to other cell engineering methods. Copyright 2020 Zhang, et. al.
    • The Role of Co-stimulatory/Co-inhibitory Signals in Graft-vs.-Host Disease

      Kumar, S.; Leigh, N.D.; Cao, X. (Frontiers Media, 2018)
      Allogeneic hematopoietic cell transplantation (allo-HCT) is an effective immunotherapeutic approach for various hematologic and immunologic ailments. Despite the beneficial impact of allo-HCT, its adverse effects cause severe health concerns. After transplantation, recognition of host cells as foreign entities by donor T cells induces graft-vs.-host disease (GVHD). Activation, proliferation and trafficking of donor T cells to target organs and tissues are critical steps in the pathogenesis of GVHD. T cell activation is a synergistic process of T cell receptor (TCR) recognition of major histocompatibility complex (MHC)-anchored antigen and co-stimulatory/co-inhibitory signaling in the presence of cytokines. Most of the currently used therapeutic regimens for GVHD are based on inhibiting the allogeneic T cell response or T-cell depletion (TCD). However, the immunosuppressive drugs and TCD hamper the therapeutic potential of allo-HCT, resulting in attenuated graft-vs.-leukemia (GVL) effect as well as increased vulnerability to infection. In view of the drawback of overbroad immunosuppression, co-stimulatory, and co-inhibitory molecules are plausible targets for selective modulation of T cell activation and function that can improve the effectiveness of allo-HCT. Therefore, this review collates existing knowledge of T cell co-stimulation and co-inhibition with current research that may have the potential to provide novel approaches to cure GVHD without sacrificing the beneficial effects of allo-HCT.
    • The subunits of IL-12, originating from two distinct cells, can functionally synergize to protect against pathogen dissemination in vivo

      Gerber, Allison N; Abdi, Kaveh; Singh, Nevil J (Elsevier Inc., 2021-10-12)
      Cytokines are typically single gene products, except for the heterodimeric interleukin (IL)-12 family. The two subunits (IL-12p40 and IL-12p35) of the prototype IL-12 are known to be simultaneously co-expressed in activated myeloid cells, which secrete the fully active heterodimer to promote interferon (IFN)γ production in innate and adaptive cells. We find that chimeric mice containing mixtures of cells that can only express either IL-12p40 or IL-12p35, but not both together, generate functional IL-12. This alternate two-cell pathway requires IL-12p40 from hematopoietic cells to extracellularly associate with IL-12p35 from radiation-resistant cells. The two-cell mechanism is sufficient to propel local T cell differentiation in sites distal to the initial infection and helps control systemic dissemination of a pathogen, although not parasite burden, at the site of infection. Broadly, this suggests that early secretion of IL-12p40 monomers by sentinel cells at the infection site may help prepare distal host tissues for potential pathogen arrival.
    • Vaccine-related major cutaneous reaction size correlates with cellular-mediated immune responses after tularaemia immunisation

      Salerno-Gonçalves, Rosangela; Chen, Wilbur H; Mulligan, Mark J; Frey, Sharon E; Stapleton, Jack T; Keitel, Wendy A; Bailey, Jason; Sendra, Eli; Hill, Heather; Johnson, Robert A; et al. (John Wiley and Sons Inc., 2021-01-19)
      Francisella tularensis, the causative agent of tularaemia, is an exceptionally infectious bacterium, potentially fatal for humans if left untreated and with the potential to be developed as a bioweapon. Both natural infection and live-attenuated vaccine strain (LVS) confer good protection against tularaemia. LVS vaccination is traditionally administered by scarification, and the formation of a cutaneous reaction or take at the vaccination site is recognised as a clinical correlate of protection. Although previous studies have suggested that high antibody titres following vaccination might serve as a useful surrogate marker, the immunological correlates of protection remain unknown.