• Immunological and toxicological considerations for the design of liposomes

      Inglut, C.T.; Ahmad, H.; Huang, H.-C. (MDPI AG, 2020)
      Liposomes hold great potential as gene and drug delivery vehicles due to their biocompatibility and modular properties, coupled with the major advantage of attenuating the risk of systemic toxicity from the encapsulated therapeutic agent. Decades of research have been dedicated to studying and optimizing liposomal formulations for a variety of medical applications, ranging from cancer therapeutics to analgesics. Some effort has also been made to elucidate the toxicities and immune responses that these drug formulations may elicit. Notably, intravenously injected liposomes can interact with plasma proteins, leading to opsonization, thereby altering the healthy cells they come into contact with during circulation and removal. Additionally, due to the pharmacokinetics of liposomes in circulation, drugs can end up sequestered in organs of the mononuclear phagocyte system, affecting liver and spleen function. Importantly, liposomal agents can also stimulate or suppress the immune system depending on their physiochemical properties, such as size, lipid composition, pegylation, and surface charge. Despite the surge in the clinical use of liposomal agents since 1995, there are still several drawbacks that limit their range of applications. This review presents a focused analysis of these limitations, with an emphasis on toxicity to healthy tissues and unfavorable immune responses, to shed light on key considerations that should be factored into the design and clinical use of liposomal formulations. Copyright 2020 by the authors.
    • Liposomes: Clinical applications and potential for image-guided drug delivery

      Lamichhane, N.; Udayakumar, T.S.; D'Souza, W.D. (MDPI AG, 2018)
      Liposomes have been extensively studied and are used in the treatment of several diseases. Liposomes improve the therapeutic efficacy by enhancing drug absorption while avoiding or minimizing rapid degradation and side effects, prolonging the biological half-life and reducing toxicity. The unique feature of liposomes is that they are biocompatible and biodegradable lipids, and are inert and non-immunogenic. Liposomes can compartmentalize and solubilize both hydrophilic and hydrophobic materials. All these properties of liposomes and their flexibility for surface modification to add targeting moieties make liposomes more attractive candidates for use as drug delivery vehicles. There are many novel liposomal formulations that are in various stages of development, to enhance therapeutic effectiveness of new and established drugs that are in preclinical and clinical trials. Recent developments in multimodality imaging to better diagnose disease and monitor treatments embarked on using liposomes as diagnostic tool. Conjugating liposomes with different labeling probes enables precise localization of these liposomal formulations using various modalities such as PET, SPECT, and MRI. In this review, we will briefly review the clinical applications of liposomal formulation and their potential imaging properties. Copyright 2018 by the authors. Licensee MDPI, Basel, Switzerland.
    • Natural products for the treatment of autoimmune arthritis: Their mechanisms of action, targeted delivery, and interplay with the host microbiome

      Dudics, S.; Langan, D.; Meka, R.R. (MDPI AG, 2018)
      Rheumatoid arthritis (RA) is a chronic, debilitating illness characterized by painful swelling of the joints, inflammation of the synovial lining of the joints, and damage to cartilage and bone. Several anti-inflammatory and disease-modifying drugs are available for RA therapy. However, the prolonged use of these drugs is associated with severe side effects. Furthermore, these drugs are effective only in a proportion of RA patients. Hence, there is a need to search for new therapeutic agents that are effective yet safe. Interestingly, a variety of herbs and other natural products offer a vast resource for such anti-arthritic agents. We discuss here the basic features of RA pathogenesis; the commonly used animal models of RA; the mainstream drugs used for RA; the use of well-characterized natural products possessing anti-arthritic activity; the application of nanoparticles for efficient delivery of such products; and the interplay between dietary products and the host microbiome for maintenance of health and disease induction. We believe that with several advances in the past decade in the characterization and functional studies of natural products, the stage is set for widespread clinical testing and/or use of these products for the treatment of RA and other diseases. Copyright 2018 by the authors. Licensee MDPI, Basel, Switzerland.